imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

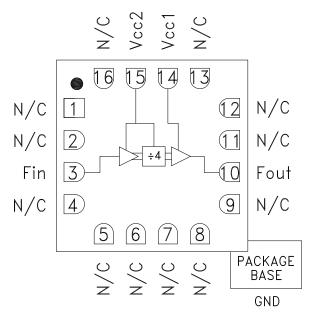
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

v04.0514



Typical Applications

Prescaler for 10 to 26 GHz PLL Applications:

- Point-to-Point / Multi-Point Radios
- VSAT Radios
- Fiber Optic
- Test Equipment
- Military

Functional Diagram

HMC447LC3

SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

Features

Very Wide Bandwidth Ultra Low SSB Phase Noise: -150 dBc/Hz Output Power: -4 dBm Single DC Supply: +5V RoHS Compliant 3x3 mm SMT Package

General Description

The HMC447LC3 is a low noise Divide-by-4 Regenerative Divider utilizing InGaP GaAs HBT technology. This wideband divider operates with input frequencies from 10 to 26 GHz, and accepts a very wide range of input power levels. THe HMC447LC3 exhibits a very low SSB Phase Noise of -150 dBc/Hz at 100 kHz offset, making it ideal for use in high frequency Phase Locked Loops (PLL), and in Local Oscillator (LO) distribution applications where fundamental and divided LO frequencies are required within a system. This versatile divider consumes only 96 mA from a single positive supply of +5V, and delivers very flat output power across the rated bandwidth. The HMC447LC3 is housed in a RoHS compliant, 3x3 mm leadless SMT package with an exposed ground paddle.

Electrical Specifications, $T_{A} = +25^{\circ}$ C, 50 Ohm System, Vcc= +5V

Parameter	Conditions	Min.	Тур.	Max.	Units
Maximum Input Frequency		26	27		GHz
Minimum Input Frequency			9	10	GHz
Input Power Range	Fin = 10 to 14 GHz	-15	-20	+10	dBm
	Fin = 14 to 18 GHz	-15	-20	+5	dBm
	Fin = 18 to 20 GHz	-10	-15	+10	dBm
	Fin = 20 to 22 GHz	-5	-10	+10	dBm
	Fin = 22 to 26 GHz	0	-5	+10	dBm
Output Power	Fin = 10 to 26 GHz	-7	-4		dBm
Reverse Leakage	RF Output Terminated		50		dB
SSB Phase Noise (100 kHz offset)	Pin = 0 dBm, Fin = 22 GHz		-150		dBc/Hz
Output Transition Time	Pin = 0 dBm, Fout = 4500 MHz		100		ps
Supply Current (Icc1 + Icc2)			96		mA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC447* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

• HMC447LC3 Evaluation Board.

DOCUMENTATION

Data Sheet

HMC447 Data Sheet

REFERENCE MATERIALS

Quality Documentation

- Package/Assembly Qualification Test Report: LC3, LC3B, LC3C (QTR: 2014-00376 REV: 01)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES

- HMC447 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC447 EngineerZone Discussions.

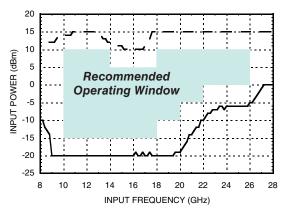
SAMPLE AND BUY

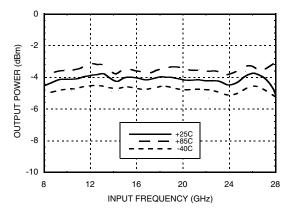
Visit the product page to see pricing options.

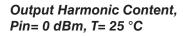
TECHNICAL SUPPORT

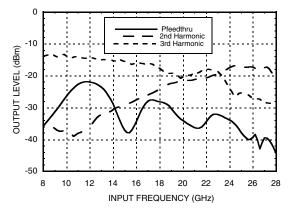
Submit a technical question or find your regional support number.

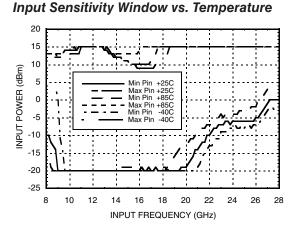
DOCUMENT FEEDBACK

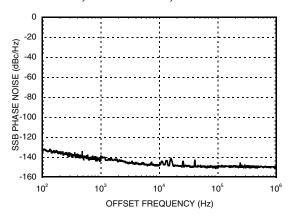

Submit feedback for this data sheet.

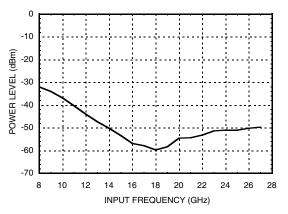

v04.0514




Input Sensitivity Window, T= 25 °C


Output Power vs. Temperature

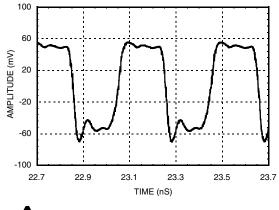



SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

SSB Phase Noise Performance, Pin= 0 dBm, Fin = 22 GHz, T= 25 °C

Reverse Leakage, Pin= 0 dBm, T= 25 °C Output Port Terminated

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v04.0514

HMC447LC3

ROHS EARTH FRIENDL

Output Voltage Waveform, Pin= 0 dBm, Fout= 2.5 GHz, T= 25 °C

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

Absolute Maximum Ratings

RF Input (Vcc = +5V)	+13 dBm
Supply Voltage (Vcc1, Vcc2)	+5.5V
Junction Temperature (Tj)	135 °C
Continuous Pdiss (T = 85 °C) (derate 11.9 mW/° C above 85 °C)	595 mW
Thermal Resistance (R _{TH}) (junction to ground paddle)	84 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Typical Supply Current vs. Vcc

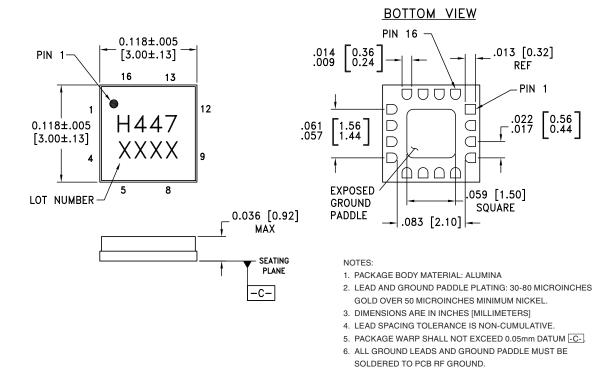
Vcc1, Vcc2 (V)	Icc (mA)
4.75	84
5.0	96
5.25	108

Note: Divider will operate over full voltage range shown above

SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

.013 [0.32]

REF


.022 .017

PIN 1

0.56 0.44

Outline Drawing

v04.0514

Package Information

Part Numb	ər	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC447L0	3	Alumina, White	Gold over Nickel	MSL3 ^[1]	H447 XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

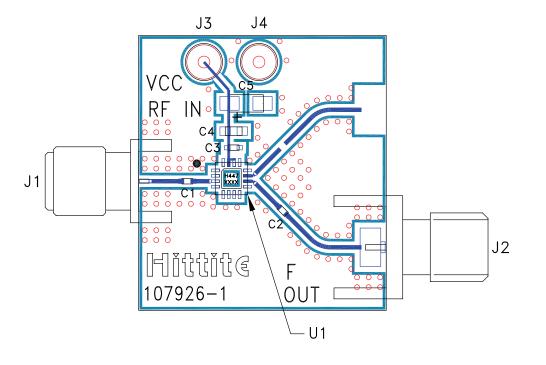
v04.0514

HMC447LC3

SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

Pin Description

Pin Number	Function	Description	Interface Schematic
1,2, 4 - 9, 11 12, 13, 16	N/C	No connection. These pins may be connected to RF/DC ground. Performance will not be affected.	
3	Fin	RF Input must be DC blocked.	500 Fin 0
10	Fout	Divided Output must be DC blocked.	Vcc 0 5V
14, 15	Vcc1, Vcc2	Supply voltage 5V \pm 0.25V. Connect both pins to +5V supply.	
	GND	Backside of package has exposed metal ground paddle which must be connected to RF/DC ground.	



v04.0514

SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

Evaluation PCB

List of Materials for Evaluation PCB 107928 [1]

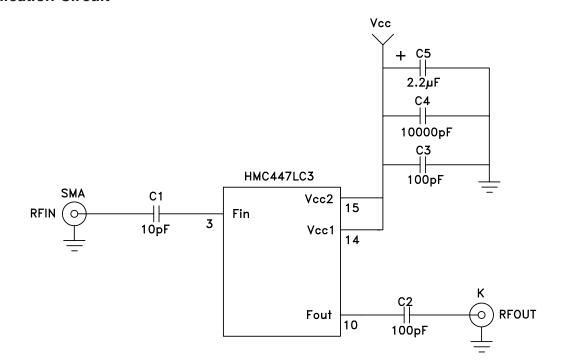
Item	Description
J1	PCB Mount SRI K-Connector
J2	PCB Mount SMA RF Connector
J3, J4	DC Pin
C1	10pF Capacitor, 0402 Pkg.
C2, C3	100 pF Capacitor, 0402 Pkg.
C4	10000 pF Capacitor, 0603 Pkg.
C5	2.2 uF Tantalum Capacitor
U1	HMC447LC3 Divide-by-4
PCB [2]	107926 Eval Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. FREQUENCY DIVIDERS & DETECTORS - SMT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


SMT GaAs HBT MMIC

DIVIDE-BY-4, 10 - 26 GHz

v04.0514

Application Circuit

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ROHS EARTH FRIENDLY

v04.0514

SMT GaAs HBT MMIC DIVIDE-BY-4, 10 - 26 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.