

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

v03.0907

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

Typical Applications

The HMC457QS16G / HMC457QS16GE is ideal for applications requiring a high dynamic range amplifier:

- CDMA & W-CDMA
- GSM, GPRS & Edge
- Base Stations & Repeaters

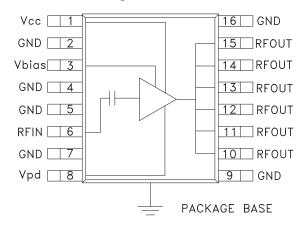
Features

Output IP3: +46 dBm

Gain: 27 dB @ 1900 MHz

48% PAE @ +32 dBm Pout

+25 dBm W-CDMA Channel Power


@ -50 dBc ACPR

Integrated Power Control (Vpd)

QSOP16G SMT Package: 29.4 mm²

Included in the HMC-DK002 Designer's Kit

Functional Diagram

General Description

The HMC457QS16G & HMC457QS16GE are high dynamic range GaAs InGaP Heterojunction Bipolar Transistor (HBT) 1 watt MMIC power amplifiers operating between 1.7 and 2.2 GHz. Packaged in a miniature 16 lead QSOP plastic package, the amplifier gain is typically 27 dB from 1.7 to 2.0 GHz and 25 dB from 2.0 to 2.2 GHz. Utilizing a minimum number of external components, the amplifier output IP3 can be optimized to +45 dBm. The power control (Vpd) can be used for full power down or RF output power/current control. The high output IP3 and PAE make the HMC457QS16G & HMC457QS16GE ideal power amplifiers for Cellular/3G base station & repeater applications.

Electrical Specifications, $T_A = +25^{\circ}\text{C}$, Vs = +5V, Vpd = +5V, Vbias = +5V [1]

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	1710 - 1990		2010 - 2170		MHz		
Gain	24	27		22	25		dB
Gain Variation Over Temperature		0.025	0.035		0.025	0.035	dB/°C
Input Return Loss		11			11		dB
Output Return Loss		8			5		dB
Output Power for 1dB Compression (P1dB)	26	29		27.5	30.5		dBm
Saturated Output Power (Psat)		32.5			32		dBm
Output Third Order Intercept (IP3) [2]	42	45		42	45		dBm
Noise Figure		6			5		dB
Supply Current (Icq)		500			500		mA
Control Current (Ipd)		4			4		mA
Bias Current (Vbias)		10			10		mA

^[1] Specifications and data reflect HMC457QS16G measured using the respective application circuits for each designated frequency band found herein. Contact the HMC Applications Group for assistance in optimizing performance for your application.

[2] Two-tone output power of +15 dBm per tone, 1 MHz spacing

HMC457* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

· HMC457QS16G Evaluation Board.

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC457 Data Sheet

REFERENCE MATERIALS 🖳

Quality Documentation

- HMC Legacy PCN: QS##, QS##E and QS##G,QS##GE packages - Relocation of pre-existing production equipment to new building
- Package/Assembly Qualification Test Report: Plastic Encapsulated QSOP (QTR: 02015 REV: 11)
- Semiconductor Qualification Test Report: GaAs HBT-B (QTR: 2013-00229)

DESIGN RESOURCES

- HMC457 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC457 EngineerZone Discussions.

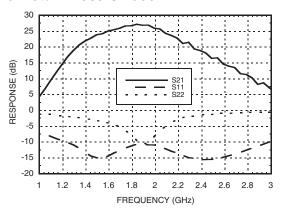
SAMPLE AND BUY 🖳

Visit the product page to see pricing options.

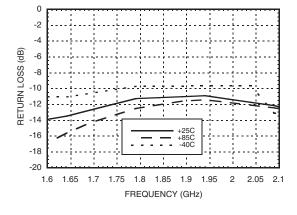
TECHNICAL SUPPORT

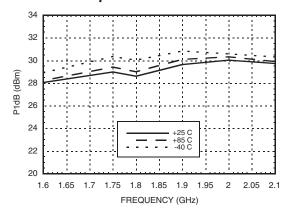
Submit a technical question or find your regional support number.

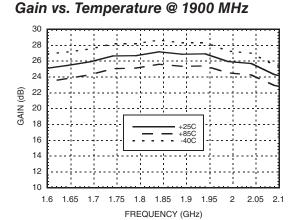
DOCUMENT FEEDBACK \Box

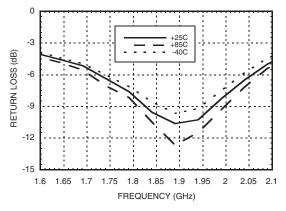

Submit feedback for this data sheet.

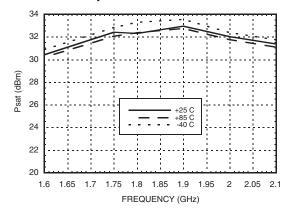
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.




Broadband Gain & Return Loss @ 1900 MHz

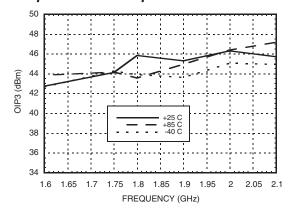

Input Return Loss vs. Temperature @ 1900 MHz

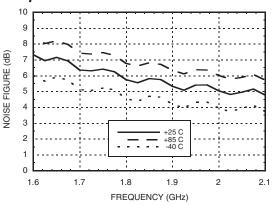

PIdB vs. Temperature @ 1900 MHz


InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

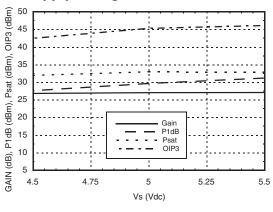
Output Return Loss vs. Temperature @ 1900 MHz

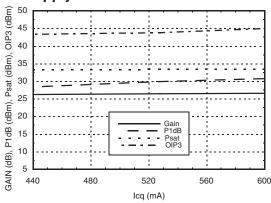
Psat vs. Temperature @ 1900 MHz

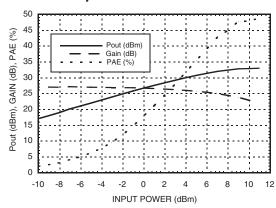


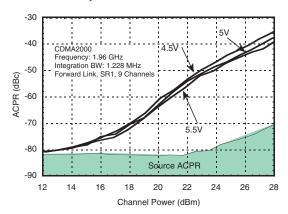


InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz


Output IP3 vs. Temperature @ 1900 MHz

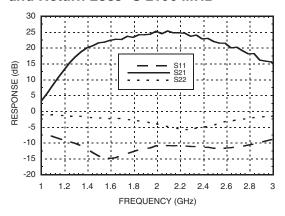

Noise Figure vs. Temperature @ 1900 MHz


Gain, Power & IP3 vs. Supply Voltage @ 1900 MHz

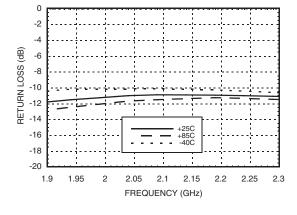

Gain, Power & IP3 vs. Supply Current @ 1900 MHz*

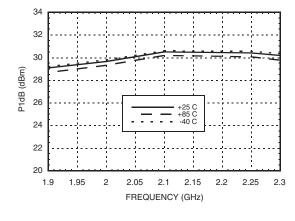
Power Compression @ 1900 MHz

ACPR vs. Supply Voltage @ 1960 MHz CDMA 2000, 9 Channels Forward

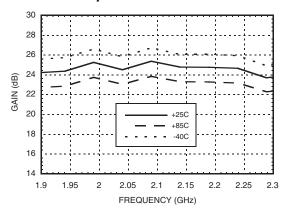


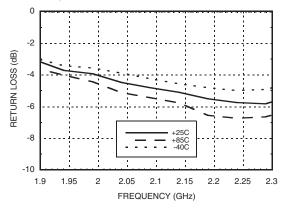
^{*} Icq is controlled by varying Vpd.



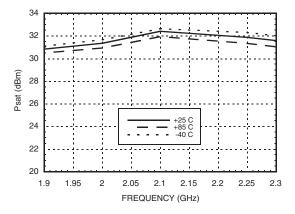

Broadband Gain and Return Loss @ 2100 MHz

Input Return Loss vs. Temperature @ 2100 MHz

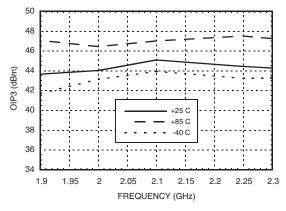

PIdB vs. Temperature @ 2100 MHz

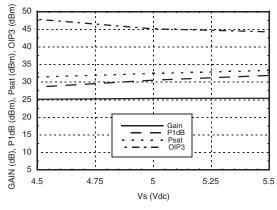

InGaP HBT 1 WATT POWER

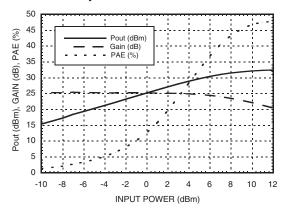
AMPLIFIER, 1.7 - 2.2 GHz


Gain vs. Temperature @ 2100 MHz

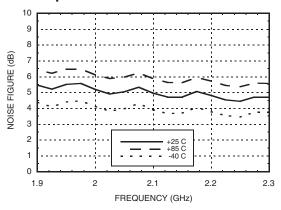
Output Return Loss vs. Temperature @ 2100 MHz


Psat vs. Temperature @ 2100 MHz

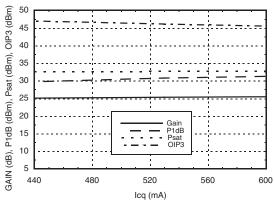



Output IP3 vs. Temperature @ 2100 MHz

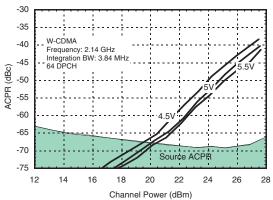
Gain, Power & IP3 vs. Supply Voltage @ 2100 MHz



Power Compression @ 2100 MHz



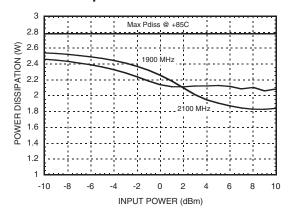
InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz


Noise Figure vs. Temperature @ 2100 MHz

Gain, Power & IP3 vs. Supply Current @ 2100 MHz*

ACPR vs. Supply Voltage @ 2140 MHz W-CDMA, 64 DPCH (Uplink)

^{*}Icq is controlled by varying Vpd



v03.0907

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

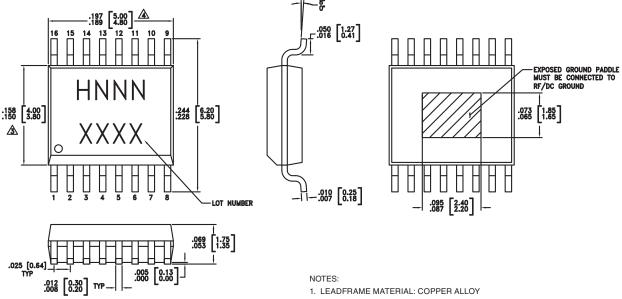
Power Dissipation

Typical Supply Current vs. Supply Voltage

Vs (V)	Icq (mA)
4.5	400
5.0	510
5.5	620

Absolute Maximum Ratings

Collector Bias Voltage (Vcc)	+6 Vdc
Control Voltage (Vpd)	+5.4 Vdc
RF Input Power (RFIN)(Vs = Vpd = +5 Vdc)	+15 dBm
Junction Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 42.9 mW/°C above 85 °C)	2.78 W
Thermal Resistance (junction to ground paddle)	23.3 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C



v03.0907

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

Outline Drawing

- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Nu	umber	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC457	7QS16G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H457 XXXX
HMC4570	QS16GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H457 XXXX

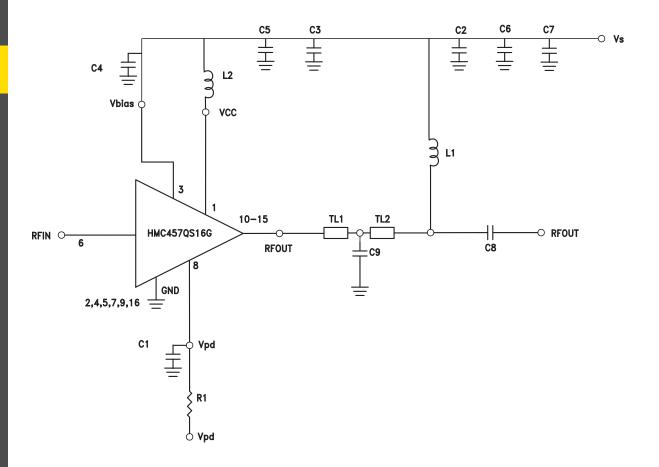
- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

v03.0907

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vec	Power supply voltage for the first amplifier stage. External bypass capacitors are required as shown in the application schematic.	Vcc
2, 4, 5, 7, 9, 16	GND	Ground: Backside of package has exposed metal ground slug that must also be connected to RF/DC ground. Vias under the device are required.	Ģ GND — —
3	Vbias	Power Supply for Bias Circuit	Vbias
6	RFIN	This pin is AC coupled and matched to 50 Ohms	RFIN ○— —
8	Vpd	Power control pin. For maximum power, this pin should be connected to +5V. A higher voltage is not recommended. For lower idle current, this voltage can be reduced.	OVPD
10 - 15	RFOUT	RF output and DC bias for the output stage.	ORFOUT ORFOUT ORFOUT ORFOUT ORFOUT ORFOUT ORFOUT



InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

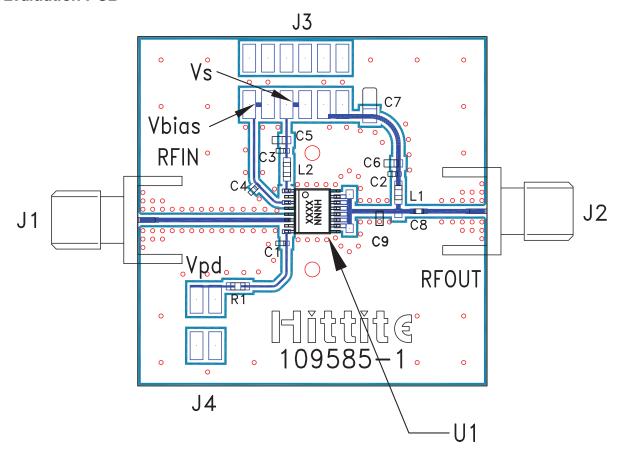
1900 & 2100 MHz Application Circuit

This circuit was used to specify the performance for 1900 & 2100 MHz operation. Contact the HMC Applications Group for assistance in optimizing performance for your application.

	TL1	TL2	
Impedance	50 Ohm	50 Ohm	
Physical Length	0.170"	0.080"	
Electrical Length 20° 9°			
PCB Material: 10 mil Rogers 4350, Er = 3.48			

Recommended Component Values	1900 MHz	2100 MHz
C1 - C4	100 pF	100 pF
C5, C6	1000 pF	1000 pF
C7	2.2 µF	2.2 µF
C8	33 pF	33 pF
C9	3.9 pF	2.7 pF
L1, L2	3.9 nH	3.9 nH
R1	160 Ohm	160 Ohm

ANALOGDEVICES


HMC457QS16G / 457QS16GE

v03.0907

InGaP HBT 1 WATT POWER AMPLIFIER, 1.7 - 2.2 GHz

Evaluation PCB

List of Materials for Evaluation PCB 106043-1900, 110171-2100 [1]

Item	Description	
J1, J2	PCB Mount SMA Connector	
J3, J4	2 mm DC Header	
C1 - C4	100 pF Capacitor, 0402 Pkg.	
C5, C6	1000 pF Capacitor, 0603 Pkg.	
C7	2.2 µF Capacitor, Tantalum	
C8	33 pF Capacitor, 0402 Pkg.	
C9	3.9 pF Capacitor, 0603 Pkg 1900 MHz	
C9	2.7 pF Capacitor, 0603 Pkg 2100 MHz	
L1, L2	3.9 nH Inductor, 0603 Pkg.	
R1	160 Ohm Resistor, 0603 Pkg.	
U1	HMC457QS16G / HMC457QS16GE	
PCB [2]	109585 Evaluation PCB, 10 mils	

[1] Reference one of these numbers when ordering complete evaluation PCB depending on frequency of operation.

[2] Circuit Board Material: Rogers 4350, Er = 3.48

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.