

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

v08.0511

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

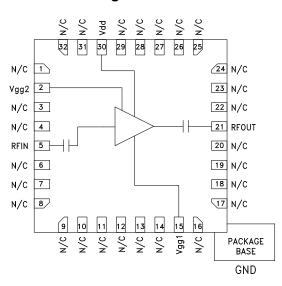
Typical Applications

The HMC463LP5(E) is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military EW, ECM & C3I
- Test Instrumentation
- Fiber Optics

Features

Gain: 13 dB


Noise Figure: 2.8 dB @ 10 GHz

P1dB Output Power: +18 dBm @ 10 GHz

Supply Voltage: +5V @ 60 mA 50 Ohm Matched Input/Output

32 Lead 5 x 5 mm SMT Package: 25 mm²

Functional Diagram

General Description

The HMC463LP5(E) is a GaAs MMIC pHEMT Low Noise AGC Distributed Amplifier packaged in a leadless 5x5 mm surface mount package which operates between 2 and 20 GHz. The amplifier provides 13 dB of gain, 2.8 dB noise figure and 18 dBm of output power at 1 dB gain compression while requiring only 60 mA from a +5V supply. An optional gate bias (Vgg2) is provided to allow Adjustable Gain Control (AGC) of 8 dB typical. Gain flatness is excellent at ±0.5 dB from 6 - 18 GHz making the HMC463LP5(E) ideal for EW, ECM RADAR and test equipment applications. The HMC463LP5(E) LNA I/Os are internally matched to 50 Ohms and are internally DC blocked.

Electrical Specifications, $T_A = +25$ °C, Vdd = 5V, Idd = 60 mA*

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		2 - 6		6 - 18		18 - 20		GHz		
Gain	10	13		9	12		8	11		dB
Gain Flatness		±0.5			±0.5			±0.5		dB
Gain Variation Over Temperature		0.010	0.015		0.010	0.015		0.010	0.015	dB/ °C
Noise Figure		3	4		3	5		5.5	6.5	dB
Input Return Loss		15			13			12		dB
Output Return Loss		13			10			10		dB
Output Power for 1 dB Compression (P1dB)	16	19		11	16		10	12		dBm
Saturated Output Power (Psat)		21			19			19		dBm
Output Third Order Intercept (IP3)		30			24			22		dBm
Supply Current (Idd) (Vdd = 5V, Vgg1 = -0.9V Typ.)		60	80		60	80		60	80	mA

^{*} Adjust Vgg1 between -2 to -0V to achieve Idd = 60 mA typical.

HMC463LP5* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC463LP5 Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

· HMC463LP5 Data Sheet

TOOLS AND SIMULATIONS 🖵

HMC463LP5 S-Parameters

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: LP5 & LP5G (QTR: 2014-00150 REV: 02)
- Semiconductor Qualification Test Report: PHEMT-F (QTR: 2013-00269)

DESIGN RESOURCES 🖵

- HMC463LP5 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC463LP5 EngineerZone Discussions.

SAMPLE AND BUY

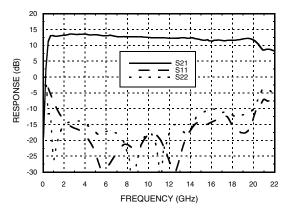
Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

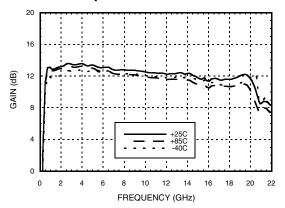
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

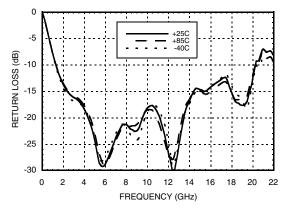
Submit feedback for this data sheet.

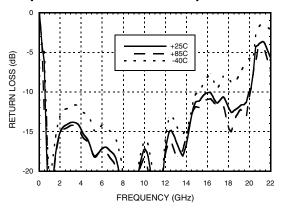


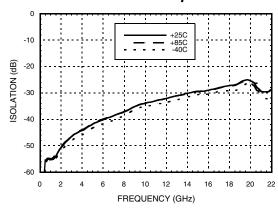
v08.0511

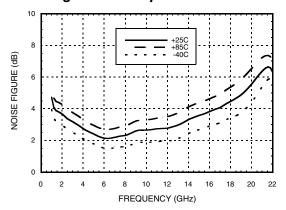


GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz


Gain & Return Loss

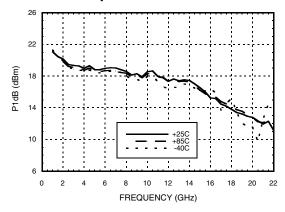

Gain vs. Temperature


Input Return Loss vs. Temperature

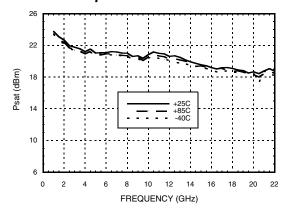

Output Return Loss vs. Temperature

Reverse Isolation vs. Temperature

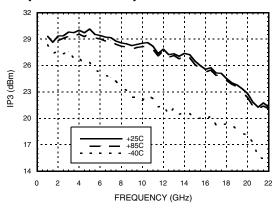
Noise Figure vs. Temperature

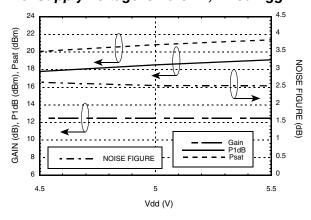


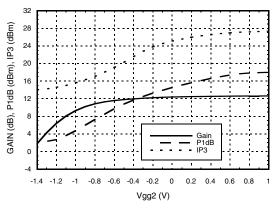
v08.0511

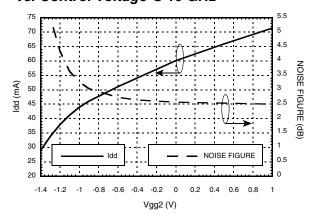


GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz


P1dB vs. Temperature

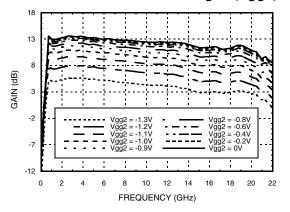

Psat vs. Temperature


Output IP3 vs. Temperature


Gain, Power & Noise Figure vs. Supply Voltage @ 10 GHz, Fixed Vgg1

Gain, P1dB & Output IP3 vs. Control Voltage @ 10 GHz

Noise Figure & Supply Current vs. Control Voltage @ 10 GHz



v08.0511

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

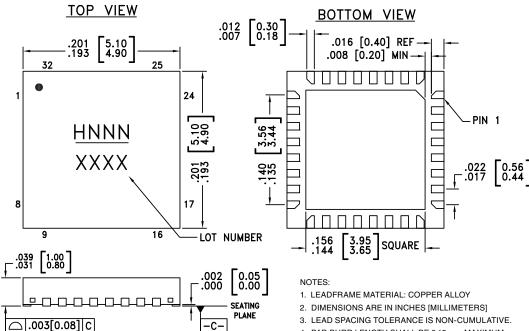
Gain @ Several Control Voltages (Vgg2)

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+9V	
Gate Bias Voltage (Vgg1)	-2 to 0V	
Gate Bias Current (Igg1)	2.5 mA	
Gate Bias Voltage (Vgg2)(AGC)	(Vdd -9) Vdc to +2V	
RF Input Power (RFIN)(Vdd = +5V)	+18 dBm	
Channel Temperature	150 °C	
Continuous Pdiss (T= 85 °C) (derate 19.1 mW/°C above 85 °C)	1.24 W	
Thermal Resistance (channel to ground paddle)	52.3 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	

Typical Supply Current vs. Vdd

Vdd (V)	ldd (mA)
+4.5	58
+5.0	60
+5.5	62



v08.0511

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

Outline Drawing

- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- PAD BURR LENGTH SHALL BE 0.15 mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05 mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC463LP5	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H463 XXXX	
HMC463LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H463 XXXX	

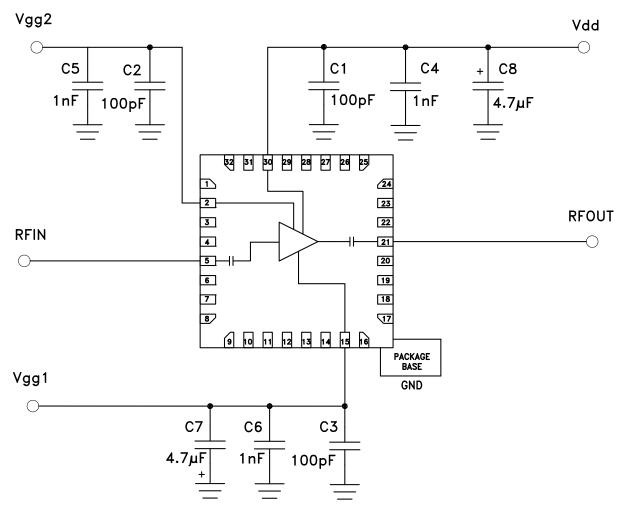
- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

v08.0511

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

Pin Descriptions

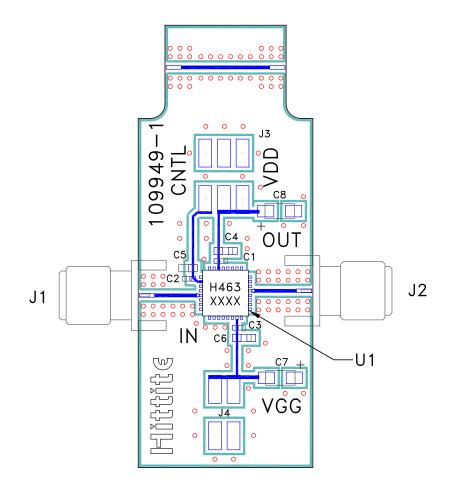
Pin Number	Function	Description	Interface Schematic		
1, 3, 4, 6-14, 16-20, 22-29, 31, 32	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.			
2	Vgg2	Optional gate control if AGC is required. Leave Vgg2 open circuited if AGC is not required. Typical Vgg2 = -1.5V to 0V	Vgg2		
5	RFIN	This pad is AC coupled and matched to 50 Ohms	RFIN O— —		
15	Vgg1	Gate control for amplifier. Adjust to achieve Idd = 60 mA.	Vgg10		
21	RFOUT	This pad is AC coupled and matched to 50 Ohms	— —○ RFOUT		
30	Vdd	Power supply voltage for the amplifier. External bypass capacitors are required	Vdd =		
Ground Paddle	GND	Ground paddle must be connected to RF/DC ground.	GND =		



v08.0511

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

Application Circuit



v08.0511

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

Evaluation PCB

List of Materials for Evaluation PCB 108341 [1]

Item	Description
J1 - J2	SRI K Connector
J3 - J4	2 mm Molex Header
C1 - C3	100 pF Capacitor, 0402 Pkg.
C4 - C6	1000 pF Capacitor, 0603 Pkg.
C7 - C8	4.7 μF Capacitor, Tantalum
U1	HMC463LP5(E) Amplifier
PCB [2]	109949 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350 or Arlon 25FR