

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

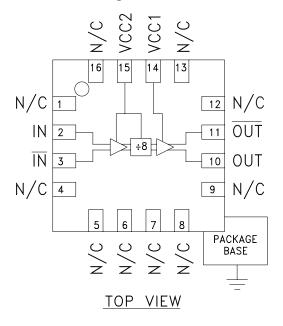
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC494LP3 / 494LP3E

v05.1211


SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz

Typical Applications

Prescaler for DC to 18 GHz PLL Applications:

- Point-to-Point / Multi-Point Radios
- VSAT Radios
- Fiber Optic
- Test Equipment
- Military

Functional Diagram

Features

Ultra Low SSB Phase Noise: -150 dBc/Hz

Very Wide Bandwidth
Output Power: -4 dBm
Single DC Supply: +5V

16 Lead 3x3mm QFN Package: 9 mm²

General Description

The HMC494LP3 & HMC494LP3E are low noise Divide-by-8 Static Dividers utilizing InGaP GaAs HBT technology packaged in leadless 3x3 mm QFN surface mount plastic packages. This device operates from DC (with a square wave input) to 18 GHz input frequency from a single +5V DC supply. The low additive SSB phase noise of -150 dBc/Hz at 100 kHz offset helps the user maintain excellent system noise performance.

Electrical Specifications, $T_A = +25^{\circ}$ C, 50 Ohm System, Vcc= +5V

Parameter	Conditions	Min.	Тур.	Max.	Units
Maximum Input Frequency		18	19		GHz
Minimum Input Frequency	Sine Wave Input. [1]		0.2	0.5	GHz
Input Power Range	Fin = 2 to 12 GHz	-20	-15	+10	dBm
	Fin = 12 to 16 GHz	-20	-15	+3	dBm
	Fin = 16 to 18 GHz	-15	-10	0	dBm
Output Power	Fin = 0.5 to 18 GHz	-7	-4		dBm
Reverse Leakage	Both RF Outputs Terminated		55		dB
SSB Phase Noise (100 kHz offset)	Pin = 0 dBm, Fin = 6 GHz		-150		dBc/Hz
Output Transition Time	Pin = 0 dBm, Fout = 882 MHz		100		ps
Supply Current (Icc1 + Icc2)			103		mA

1. Divider will operate down to DC for square-wave input signal

HMC494* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

· HMC494LP3 Evaluation Board

DOCUMENTATION

Data Sheet

• HMC494 Data Sheet

REFERENCE MATERIALS 4

Quality Documentation

- Package/Assembly Qualification Test Report: 16L 3x3mm QFN Package (QTR: 11003 REV: 02)
- Package/Assembly Qualification Test Report: LP2, LP2C, LP3, LP3B, LP3C, LP3D, LP3F, LP3G (QTR: 2014-0364)
- Package/Assembly Qualification Test Report: Plastic Encapsulated QFN (QTR: 05006 REV: 02)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES 🖵

- HMC494 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC494 EngineerZone Discussions.

SAMPLE AND BUY 🖵

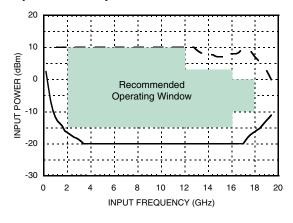
Visit the product page to see pricing options.

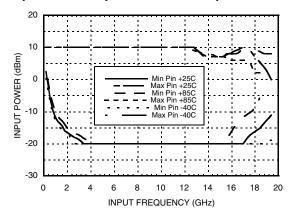
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

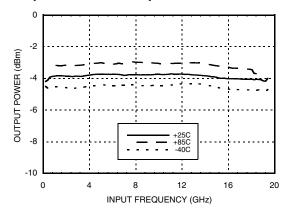
DOCUMENT FEEDBACK 🖳

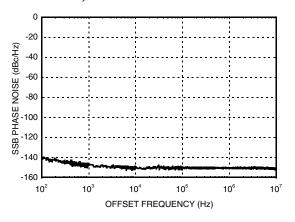
Submit feedback for this data sheet.

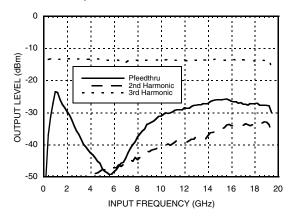

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

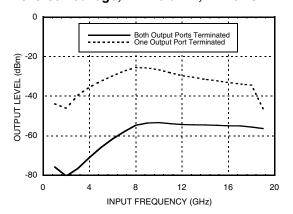


SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz


Input Sensitivity Window, T= 25 °C

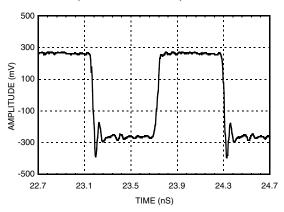

Input Sensitivity Window vs. Temperature


Output Power vs. Temperature


SSB Phase Noise Performance, Pin= 0 dBm, T= 25 °C

Output Harmonic Content, Pin= 0 dBm, T= 25 °C

Reverse Leakage, Pin= 0 dBm, T= 25 °C

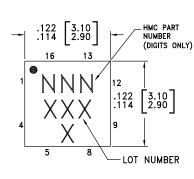


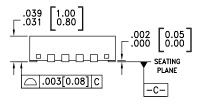
SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz

Output Voltage Waveform, Pin= 0 dBm, Fout= 882 MHz, T= 25 °C

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Absolute Maximum Ratings


RF Input (Vcc = +5V)	+13 dBm
Supply Voltage (Vcc1, Vcc2)	+5.5V
Channel Temperature (Tc)	135 °C
Continuous Pdiss (T = 85 °C) (derate 11.9 mW/° C above 85 °C)	593 mW
Thermal Resistance (R _{TH}) (junction to ground paddle)	84 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A


Typical Supply Current vs. Vcc

Vcc1, Vcc2 (V)	Icc (mA)	
4.75	90	
5.0	103	
5.25	115	

Note: Divider will operate over full voltage range shown above

Outline Drawing

NOTES:

BOTTOM VIEW

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

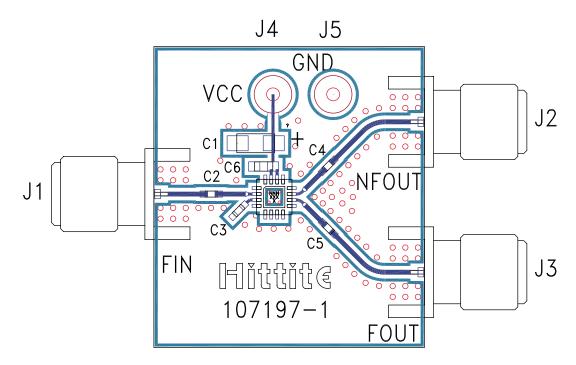
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC494LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	494 XXXX
HMC494LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	494 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz

Pin Description


Pin Number	Function	Description	Interface Schematic	
1, 4-9, 12, 13, 16	N/C	No connection.		
2	IN	RF Input must be DC blocked.	Vcc 0 5 V	
3	ĪN	RF Input 180° out of phase with pin 2 for differential operation. AC ground for single ended operation.	Vcc ○ 5V 50Ω IN ○	
10	ОИТ	Divided Output.	Vcc 05V OUT	
11	ОПТ	Divided output 180° out of phase with pin 10.	Vcc O 5V	
14, 15	Vcc1, Vcc2	Supply voltage 5V \pm 0.25V. Connect both pins to +5V supply.		
	GND	Ground: Backside of package has exposed metal ground slug which must be connected to RF/DC ground.	GND =	

SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz

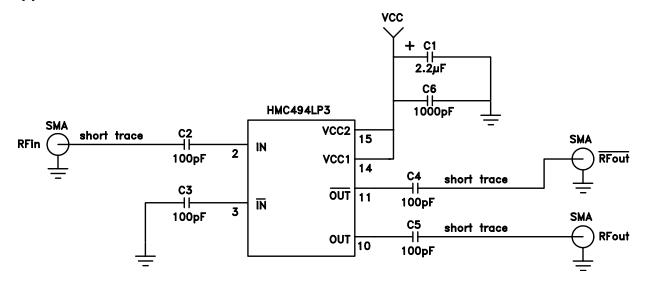
Evaluation PCB

List of Materials for Evaluation PCB 107384 [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4, J5	DC Pin
C2 - C5	100 pF Capacitor, 0402 Pkg.
C6	1000 pF Capacitor, 0603 Pkg.
C1	2.2 uF Tantalum Capacitor
U1	HMC494LP3 / HMC494LP3E Divide-by-2
PCB [2]	107197 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. This evaluation board is designed for single ended input testing. J2 and J3 provide differential output signals.


^[2] Circuit Board Material: Rogers 4350

SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 18 GHz

Application Circuit

