# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





v04.1108



### **Typical Applications**

The HMC497LP4(E) is ideal for:

- UMTS, GSM or CDMA Basestations
- Fixed Wireless or WLL
- ISM Transceivers, 900 & 2400 MHz
- GMSK, QPSK, QAM, SSB Modulators

### **Functional Diagram**



# HMC497LP4 / 497LP4E

### SiGe WIDEBAND DIRECT MODULATOR RFIC, 100 - 4000 MHz

### Features

Very Low Noise Floor: -161 dBm/Hz Very High Linearity: +22 dBm OIP3 High Output Power: +9 dBm Output P1dB High Modulation Accuracy DC - 700 MHz Baseband Input

### **General Description**

The HMC497LP4(E) is a low noise high linearity Direct Quadrature Modulator RFIC which is ideal for digital modulation applications from 100 - 4000 MHz including; Cellular/3G, Broadband Wireless Access & ISM circuits. Housed in a compact 4x4 mm (LP4) SMT QFN package, the RFIC requires minimal external components & provides a low cost alternative to more complicated double upconversion architectures. The RF output port is single-ended and matched to 50 Ohms with no external components. The LO requires -6 to +6 dBm and can be driven in either differential or single-ended mode while the baseband inputs will support modulation inputs from DC - 700 MHz typical. This device is optimized for a supply voltage of +4.5V to +5.5V and consumes 170 mA @ +5V supply.

#### Electrical Specifications, See Test Conditions on following page herein.

| Parameter                              | Min. | Тур.      | Max. | Min. | Тур.      | Max. | Min. | Тур.      | Max. | Min. | Тур.     | Max. | Units  |
|----------------------------------------|------|-----------|------|------|-----------|------|------|-----------|------|------|----------|------|--------|
| Frequency Range, RF                    |      | 450 - 960 | )    | 1    | 700 - 220 | 0    | 22   | 200 - 270 | 00   | 34   | 400 - 40 | 00   | MHz    |
| Output P1dB                            |      | +8        |      |      | +8        |      |      | +7        |      |      | +6       |      | dBm    |
| Output Noise Floor                     |      | -161      |      |      | -159      |      |      | -157      |      |      | -150     |      | dBm/Hz |
| Output IP3                             |      | +22       |      |      | +22       |      |      | +20       |      |      | +17      |      | dBm    |
| Output Power                           | +4   | +6        |      | +3   | +5        |      | +2   | +5        |      | 0    | +3       |      | dBm    |
| Carrier Feedthrough (uncalibrated)     |      | -38       |      |      | -36       |      |      | -32       |      |      | -30      |      | dBm    |
| Sideband Suppression<br>(uncalibrated) |      | 43        |      |      | 42        |      |      | 33        |      |      | 22       |      | dBc    |
| LO Port Return Loss                    |      | 25        |      |      | 15        |      |      | 14        |      |      | 13       |      | dB     |
| RF Port Return Loss                    |      | 11        |      |      | 20        |      |      | 17        |      |      | 11       |      | dB     |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

10 - 24

10



### SiGe WIDEBAND DIRECT MODULATOR RFIC, 100 - 4000 MHz



### Electrical Specifications, (continued)

v04.1108

| Parameter                                       | Conditions                              | Min. | Тур. | Max. | Units |
|-------------------------------------------------|-----------------------------------------|------|------|------|-------|
| RF Output                                       |                                         |      |      |      |       |
| RF Frequency Range                              |                                         | 100  |      | 4000 | MHz   |
| RF Return Loss                                  |                                         |      | 15   |      | dB    |
| LO Input                                        |                                         |      |      |      |       |
| LO Frequency Range                              |                                         | 100  |      | 4000 | MHz   |
| LO Input Power                                  |                                         | -6   | 0    | +6   | dBm   |
| LO Port Return Loss                             |                                         |      | 15   |      | dB    |
| Baseband Input Port                             |                                         |      |      |      |       |
| Baseband Port Bandwidth                         | 3 dB Bandwidth with 50 $\Omega$ source. | DC   |      | 700  | MHz   |
| Baseband Input DC Voltage (Vbbdc)               |                                         | +1.4 | +1.5 | +1.6 | V     |
| Baseband Input DC Bias Current (Ibbdc)          | Single-ended.                           |      | 90   |      | μA    |
| Single-ended Baseband Input Capacitance         | De-embed to the lead of the device.     |      | 4.5  |      | pF    |
| DC Power Requirements See Test Conditions Below |                                         |      |      |      |       |
| Supply Voltage (Vcc1, Vcc2)                     |                                         | +4.5 | +5.0 | +5.5 | V     |
| Supply Current (Icc1, Icc2)                     |                                         |      | 168  |      | mA    |

#### Test Conditions: Unless Otherwise Specified, the Following Test Conditions Were Used

| Condition                                       |
|-------------------------------------------------|
| +25 °C                                          |
| 200 kHz                                         |
| +1.5V                                           |
| 1.6V                                            |
| 800 mV per tone @ 150 & 250 kHz                 |
| 20 MHz                                          |
| +5.0V                                           |
| 0 dBm                                           |
| Single-Ended through LON                        |
| Refer to HMC497LP4 Application Schematic Herein |
| Uncalibrated                                    |
|                                                 |

### Calibrated vs. Uncalibrated Test Results

During the Uncalibrated Sideband and Carrier Suppression tests, care is taken to ensure that the I/Q signal paths from the Vector Signal Generator (VSG) to the Device Under Test (DUT) are equal. The "Uncalibrated, +25 °C" Sideband and Carrier Suppression plots were measured at room temperature, while the "Uncalibrated, over Temperature" Sideband and Carrier Suppression plots represent the worst case uncalibrated suppression levels measured at T= -40 °C, +25 °C, and +85 °C.

The "Calibrated, + 25 °C" Sideband Suppression data was plotted after a manual adjustment of the I/Q amplitude balance and I/Q phase offset (skew) at +25 °C, and at each LO input power level. The +25 °C adjustment settings were held constant during tests over temperature. The "Calibrated, over Temperature" plots represent the worst case calibrated Sideband Suppression levels at T= -40 °C, +25 °C, and +85 °C.

The "Calibrated, +25 °C" Carrier Suppression data was plotted after a manual adjustment of the Ip/In & Qp/Qn DC offsets at +25 °C, and at each LO input power level. The +25 °C adjustment settings were held constant during tests over temperature. The "Calibrated, over Temperature" plots represent the worst case Carrier Suppression levels measured at T= -40 °C, +25 °C, and +85 °C.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



SiGe WIDEBAND DIRECT

v04.1108



#### Wideband Performance vs. Frequency



Uncalibrated Carrier Feedthrough <sup>[1]</sup> vs. Frequency



Sideband Suppression vs. Frequency



#### [1] See note titled "Calibrated vs. Uncalibrated test results" herein.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Output IP3, P1dB & Noise Floor @ 20 MHz Offset vs. Frequency

MODULATOR RFIC, 100 - 4000 MHz



#### Calibrated Carrier Feedthrough <sup>[1]</sup> vs. Frequency



#### Return Loss vs. Frequency





SiGe WIDEBAND DIRECT

v04.1108



Wideband Performance vs. Frequency Over LO Power <sup>[3]</sup>



### Uncalibrated Carrier Feedthrough <sup>[2]</sup> vs. Frequency



Wideband Performance vs. Frequency Over Supply Voltage <sup>[1]</sup>



[1] See note titled "Calibrated vs. Uncalibrated test results" herein.

[2] Supply voltage from +4.5 to +5.5V.[3] LO Power from -6 dBm to +6 dBm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Output IP3, P1dB & Noise Floor @ 20 MHz

MODULATOR RFIC, 100 - 4000 MHz

Offset vs. Frequency Over LO Power <sup>[3]</sup>



Calibrated Carrier Feedthrough <sup>[2]</sup> vs. Frequency



Output IP3, P1dB & Noise Floor @ 20 MHz vs. Offset Frequency Over Supply Voltage <sup>[1]</sup>





SiGe WIDEBAND DIRECT

v04.1108



ACPR & Output Noise for W-CDMA @ 2140 MHz



### **Compression Characteristic @ 2140 MHz**



# EVM vs. LO Harmonic Level & Sideband Rejection for EDGE @ 900 MHz



# MODULATOR RFIC, 100 - 4000 MHz

Output Noise @ 20 MHz Offset vs. LO Power Over Temperature



# Power & Linearity @ 2140 MHz vs. Baseband Voltage



# EVM vs. LO Harmonic Level & Sideband Rejection for EDGE @ 1900 MHz



Note 1: W-CDMA (Modulation Set-up for ACPR Mode); The Baseband I and Q input signals were generated using "Test Model 1 with 64 channels" settings in the Agilent E3844C.

Note 2: The I/Q baseband amplitude and phase inputs were offset to achieve Sideband Rejection (SBR) levels. LO = +6 dBm, SSB Power = 0 dBm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



### SiGe WIDEBAND DIRECT MODULATOR RFIC, 100 - 4000 MHz



### Absolute Maximum Ratings

| Vcc1, Vcc2                                                  | 0V to +6V      |  |
|-------------------------------------------------------------|----------------|--|
| LO Input Power                                              | +18 dBm        |  |
| Baseband Input Voltage (AC + DC)<br>(Reference to GND)      | 0.0V to +2.8V  |  |
| Channel Temperature                                         | 150 °C         |  |
| Continuous Pdiss (T = 85°C)<br>(Derate 30 mW/°C above 85°C) | 1.8 Watts      |  |
| Thermal Resistance (R <sub>th</sub> )<br>(junction to lead) | 34 °C/W        |  |
| Storage Temperature                                         | -65 to +150 °C |  |
| Operating Temperature                                       | -40 to +85 °C  |  |
| ESD Sensitivity (HBM)                                       | Class 1A       |  |

v04.1108





### **Outline Drawing**



- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm. 6. ALL GROUND LEADS AND GROUND PADDLE MUST
- BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

### Package Information

| Part Number | Package Body Material                              | Lead Finish   | MSL Rating          | Package Marking <sup>[3]</sup> |
|-------------|----------------------------------------------------|---------------|---------------------|--------------------------------|
| HMC497LP4   | Low Stress Injection Molded Plastic                | Sn/Pb Solder  | MSL1 [1]            | H497<br>XXXX                   |
| HMC497LP4E  | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 <sup>[2]</sup> | <u>H497</u><br>XXXX            |

[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v04.1108



### SiGe WIDEBAND DIRECT MODULATOR RFIC, 100 - 4000 MHz

### **Pin Descriptions**

| Pin Number                                | Function | Description                                                                                                                                                                    | Interface Schematic |
|-------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1,6, 7, 13, 15                            | N/C      | Not connected.                                                                                                                                                                 |                     |
| 2, 5, 8, 11,<br>12, 14, 17, 19,<br>20, 23 | GND      | These pins and the ground paddle should be connected to a high quality RF/DC ground.                                                                                           | O GND               |
| 3, 4                                      | LOP, LON | LO inputs. Need DC decoupling capacitors.<br>The ports could be driven single ended or differentially.                                                                         | Vcc O<br>CLO        |
| 9, 10                                     | QN, QP   | Q channel differential baseband input. These high<br>impedance ports should be biased around 1.5V DC.<br>Nominal recommended baseband input is around<br>1.6V pp differential. | Qn,Qp 50 0          |
| 16                                        | RFOUT    | RF output. 50 Ohms. Needs DC blocking capacitor.                                                                                                                               | RFP                 |
| 18                                        | Vcc1     | Supply voltage for the mixer and output stages 79mA @ +5.0V.                                                                                                                   |                     |
| 21, 22                                    | IP, IN   | I channel differential baseband input.<br>These high impedance ports should be at the<br>same bias voltage (VbbDC) as Qn & Qp.                                                 | lp,ln<br>=          |
| 24                                        | Vcc2     | Supply voltage for the LO stage 88mA @ +5V.                                                                                                                                    | Vcc2O               |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

10



v04.1108



### SiGe WIDEBAND DIRECT MODULATOR RFIC, 100 - 4000 MHz

### **Evaluation PCB**



### List of Materials for Evaluation PCB 108962 [1]

| Item    | Description                       |  |  |  |
|---------|-----------------------------------|--|--|--|
| J1 - J7 | PC Mount SMA Connector            |  |  |  |
| J8, J9  | DC Molex Connector                |  |  |  |
| C1 - C3 | 100 pF Chip Capacitor, 0402 Pkg.  |  |  |  |
| C4, C5  | 1000 pF Chip Capacitor, 0402 Pkg. |  |  |  |
| C6, C7  | 4.7 uF, Case A, Tantulum          |  |  |  |
| U1      | HMC497LP4 Modulator               |  |  |  |
| PCB [2] | 108960 Eval Board                 |  |  |  |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v03.0307



### SiGe WIDEBAND DIRECT MODULATOR RFIC, 100 - 4000 MHz

**Application & Evaluation PCB Schematic** 



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v03.0307



Notes:

SiGe WIDEBAND DIRECT MODULATOR RFIC, 100 - 4000 MHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.