

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC533LP4 / 533LP4E

v00.0405

MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

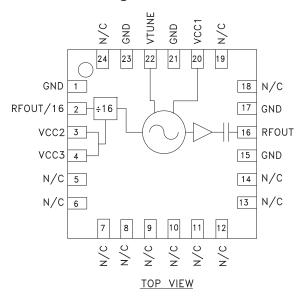
Typical Applications

Low noise MMIC VCO w/Divide-by-16 for:

- VSAT Radio
- Point to Point/Multipoint Radio
- Test Equipment & Industrial Controls
- Military End-Use
- Automotive Radar

Features

Pout: +12 dBm


Phase Noise: -95 dBc/Hz @100 KHz Typ.

No External Resonator Needed

Single Supply: +5V @ 220 mA

24 Lead 4x4mm QFN Package: 9 mm²

Functional Diagram

General Description

The HMC533LP4 & HMC533LP4E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCOs. The HMC533LP4 & HMC533LP4E integrate resonators, negative resistance devices, varactor diodes and feature a divide-by-16 output. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +12 dBm typical from a +5V supply voltage. Prescaler function can be disabled to conserve current if not required. The voltage controlled oscillator is packaged in a leadless QFN 4 x 4 mm surface mount package.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc1, Vcc2, Vcc3 = +5V

Parameter		Min.	Тур.	Max.	Units
Frequency Range			23.8 - 24.8		GHz
Power Output	RFOUT RFOUT/16	+9 -7	+12 -4	+15 -1	dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RFOUT			-95		dBc/Hz
Tune Voltage	Vtune	2		13	V
Supply Current	lcc	180	220	260	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			3		dB
Harmonics/Subharmonics	1/2 3/2		26 37		dBc dBc
Pulling (into a 2.0:1 VSWR)			13		MHz pp
Pushing @ Vtune= 5V			80		MHz/V
Frequency Drift Rate			2.3		MHz/°C

HMC533* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC533LP4 Evaluation Board.

DOCUMENTATION

Data Sheet

• HMC533 Data Sheet

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
- Package/Assembly Qualification Test Report: Plastic Encapsulated QFN (QTR: 05006 REV: 02)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES 🖵

- HMC533 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC533 EngineerZone Discussions.

SAMPLE AND BUY

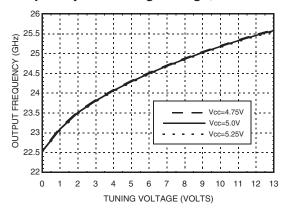
Visit the product page to see pricing options.

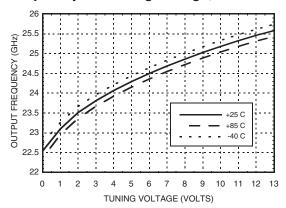
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

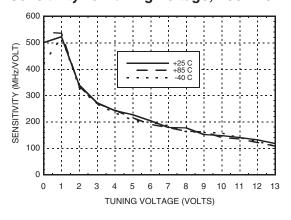
DOCUMENT FEEDBACK 🖳

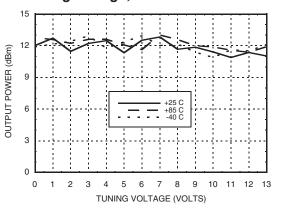
Submit feedback for this data sheet.


This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

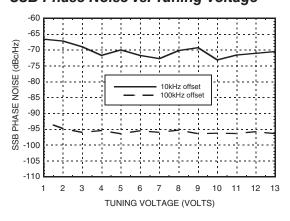


MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

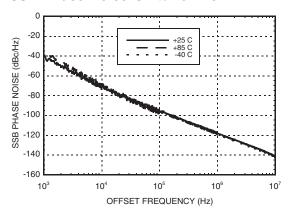

Frequency vs. Tuning Voltage, T= 25°C


Frequency vs. Tuning Voltage, Vcc= +5V

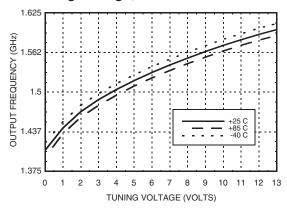
Sensitivity vs. Tuning Voltage, Vcc= +5V

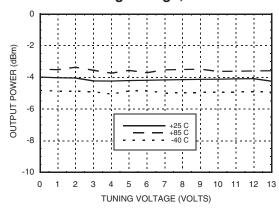


Output Power vs. Tuning Voltage, Vcc= +5V



MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz


SSB Phase Noise vs. Tuning Voltage


SSB Phase Noise @ Vtune= +5V

Divide-by-16 Frequency vs. Tuning Voltage, Vcc= +5V

Divide-by-16 Output Power vs. Tuning Voltage, Vcc= +5V

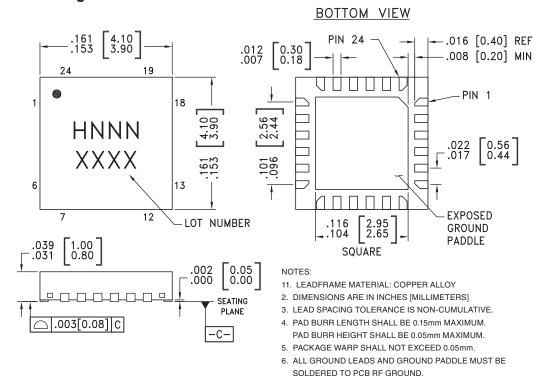
Absolute Maximum Ratings

Vcc1, Vcc2	5.5 V
Vtune	0 to 15V Max.
Junction Temperature	135 °C
Continuous Pdiss (T=85 °C) (derate 28 mW/C above 85 °C	1.4 W
Thermal Resistance	36 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	200
5.0	220
5.25	240

Note: VCO will operate over full voltage range shown above.


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

Outline Drawing

Package Information

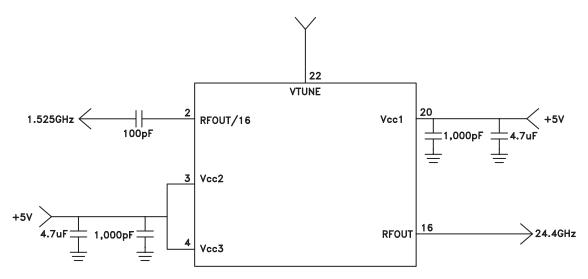
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC533LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H533 XXXX
HMC533LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H533 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 15, 17, 21, 23	GND	Package bottom has an exposed metal paddle that must also be connected to RF/DC ground.	= O GND
2	RFOUT/16	Divided-by-16 Output	ORFOUT/16

7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

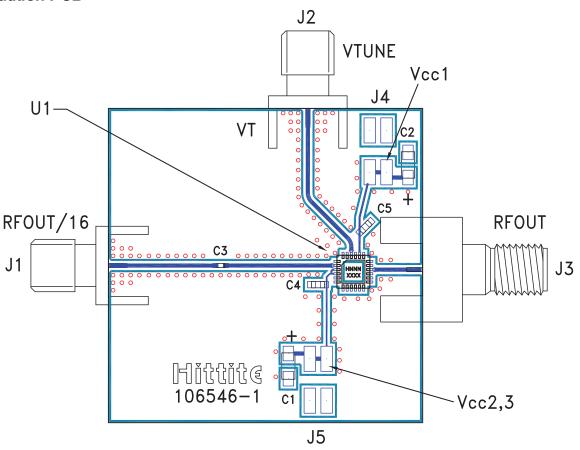


MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
3, 4	VCC2, VCC3	Supply voltage for prescaler. If prescaler is not required, these pins may be left open to conserve 100 mA of current	Vcc2,30
5-14, 18, 19, 24	N/C	No Connection. These pins may be connected to RF/DC ground. Performance will not be affected.	
16	RFOUT	RF output (AC coupled).	RFOUT
20	VCC1	Supply Voltage, +5V	Vcc10 16pF
22	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	VTUNEO 1250 5.5pF 3.6pF

Typical Application Circuit



MMIC VCO w/ DIVIDE-BY-16, 23.8 - 24.8 GHz

Evaluation PCB

List of Materials for Evaluation PCB 106651 [1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3	2.92 mm PCB mount k-connector
J4 - J5	2 mm DC Header
C1 - C2	4.7 μF Tantalum Capacitor
C3	100 pF Capacitor, 0402 Pkg.
C4 -C5	1,000 pF Capacitor, 0603 Pkg.
U1	HMC533LP4 / HMC533LP4E VCO
PCB [2]	106546 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350