

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC535LP4 / 535LP4E

v01.1009

PHASE-LOCKED OSCILLATOR, 14.7 - 15.4 GHz

Typical Applications

Phase-Locked Oscillator for:

- VSAT Radio
- Point-to-Point & Point-to-Multi-Point Radio
- Test Equipment & Industrial Controls
- Military End-Use

Functional Diagram

Features

Pout: +9 dBm

Phase Noise: -110 dBc/Hz @100 KHz Typ.

Single Supply: +5V @ 340 mA

+12V @ 28 mA

24 Lead 4x4mm QFN Package: 9 mm²

General Description

The HMC535LP4 & HMC535LP4E are GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC PLOs. The PLO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +9 dBm typical from a +5V supply voltage. All functions (VCO, Op-Amp, PFD, Prescaler) are fully integrated while providing allowances for off-chip customer specific loop components. The PLO MMIC accepts a single-ended or a differential reference oscillator input signal in the range of 230 to 240 MHz, and a digital Lock Detector (LD) output is provided to confirm the status of the loop. The phase-locked oscillator is packaged in a leadless QFN 4 x 4 mm surface mount package.

Electrical Specifications, $T_A = +25^{\circ}$ C

Parameter		Min.	Тур.	Max.	Units
Power Supplies:					
VCO Voltage	Vcc1	_	5	_	V
VCO Current	lcc1	_	172	_	mA
Op-Amp Voltage	Vcc2	_	12	_	V
Op-Amp Current	lcc2	_	28	_	mA
Digital Voltage	Vcc3	_	5	_	V
Digital Current	lcc3	_	168	_	mA
PLO Characteristics:					
RF Operating Freq.		14.7	_	15.4	GHz
RF Power		6	9	_	dBm
Reference Input Freq.		229.69	_	240.62	MHz
Reference Input Power		0	5	10	dBm
RF Phase Noise	100 KHz offset	_	-110	_	dBc/Hz
Locking Time	Loop BW = 1 MHz	_	20	_	μs
Lock Detect Output					
Locked		_	0.3	0.5	V _{ave}
Unlocked		0.7	1.0	_	V _{ave}

HMC535* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

• HMC535LP4 Evaluation Board.

DOCUMENTATION

Application Notes

 Determining the FM Bandwidth of a Wideband Varactor Tuned VCO

Data Sheet

· HMC535 Data Sheet

REFERENCE MATERIALS 🖳

Quality Documentation

- Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
- Package/Assembly Qualification Test Report: Plastic Encapsulated QFN (QTR: 05006 REV: 02)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES

- HMC535 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC535 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

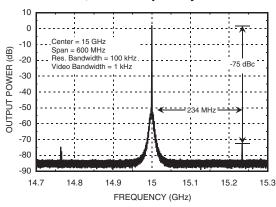
DOCUMENT FEEDBACK 🖳

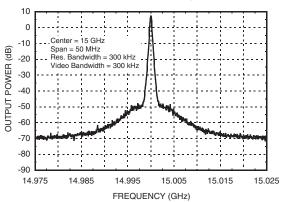
Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

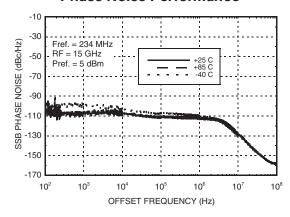
PHASE-LOCKED OSCILLATOR, 14.7 - 15.4 GHz

Electrical Specifications, (Continued)

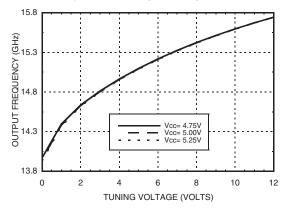

Parameter		Min.	Тур.	Max.	Units
VCO Characteristics:					
RF Operating Freg.		14.7	_	15.4	GHz
RF Power		6	9	_	dBm
RF Tuning Sensitivity	V _{tune} +2 to +9.5 V	_	160	_	MHz/V
3 2 2 3 3	V _{tune} 0 to +2 V	_	_	590	MHz/V
	V _{tune} +9.5 to +12 V	50	_	_	MHz/V
Tuning Voltage Leakage Current	V _{tune} +2 to +9.5 V	_	_	25	μA
RF Phase Noise	100 kHz offset	_	-108	_	dBc/Hz
RF Harmonics	1/2 F _{OP}	_	_	-20	dBc
	3/2 F _{OP}	_	_	-35	dBc
	4/2 F _{OP}	_	_	-8	dBc
	5/2 F _{OP}	_	_	-25	dBc
RF Pushing	OP .	_	_	-125	MHz/V
RF Pulling	VSWR 2:1 any phase	_	_	10	MHz
RF Drift Rate	VT _{VCO} input	_	_	20	MHz/°C
3 dB Modulator Bandwidth	VCO 1	30	_	_	MHz
Phase Frequency Detector:					
REF Input Capacitance		_	_	10	pF
REF Input Resistance		_	50	_	Ohm
REF Input VSWR	Referenced to 50 Ohms	_	_	2:1	
Output High Voltage		_	Vcc3	_	V
Output Low Voltage		Vcc3 -1.9	Vcc3 -1.95	Vcc3 -2	V
Phase Noise		_	-150	_	dBc/Hz
Op-Amp Characteristics:					
Input Offset Voltage	$V_{CM} = 2.5V, 5.2V$	_	1	_	mV
Input bias Current	$V_{CM} = 2.5V, 5.2V$	_	5	_	μΑ
Large-Signal Voltage Gain	Open Loop, No Load	_	69	_	dB
Common Mode Rejection Ratio	$V_{CM} = 2.5V$	_	104	_	dB
Input Common Mode Range	Frequency = 1 MHz	2.5		5.2	V
Power Supply Rejection Ratio	$V_{CM} = 2.5V$	2.5	63	5.2	dB
rower Supply Rejection hatto	Frequency = 1 MHz	_	03	_	ub
Output Voltage Swing Low	No Load,	_	0.8	1.2	V
. 5	I _{SINK} = 5 mA	_	0.81	1.2	V
Output Voltage Swing High	No Load	10	10.5	_	V
	$I_{SOUBCE} = 5 \text{ mA}$	10	10.2	_	V
Gain Bandwidth Product	Frequency = 6 MHz	_	400	_	MHz
Slew Rate	A _V = 10, No Load	_	146	_	V/µs
	$V_{0} = 10V$				
Phase Margin	Open Loop	_	110	_	Deg
Input Voltage Noise	Frequency = 10 kHz	_	1.6		nV / sqrt (Hz)
Prescaler (Divider) Characteristics:					
Prescaler Division		-	64	_	
Phase Noise		-	-156	_	dBc/Hz


PHASE-LOCKED OSCILLATOR, 14.7 - 15.4 GHz

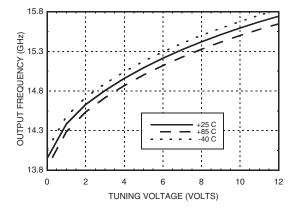
PLO Performance Plots


Reference Spurs @ 15 GHz BW = 1 MHz, Ref. Frequency = 234 MHz

15 GHz Locked RF Signal BW = 1 MHz, Ref. Frequency = 234 MHz



Phase Noise Performance



VCO Performance Plots

Frequency vs. Tuning Voltage, T = 25°C

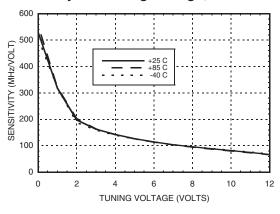
Frequency vs. Tuning Voltage, Vcc1 = +5V

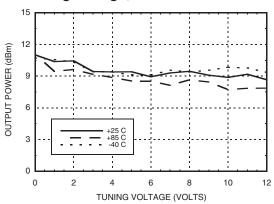
12

MT

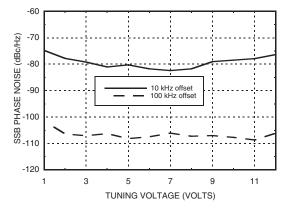
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

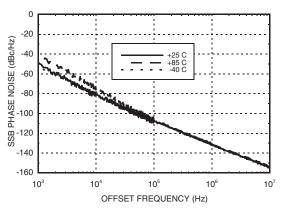
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D



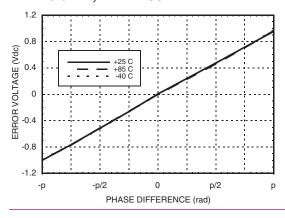

PHASE-LOCKED OSCILLATOR, 14.7 - 15.4 GHz

VCO Performance Plots (continued)

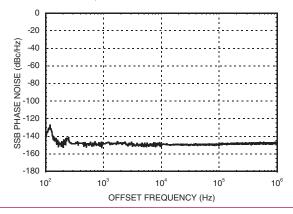

Sensitivity vs. Tuning Voltage, Vcc1 = +5V


Output Power vs. Tuning Voltage, Vcc1 = +5V

SSB Phase Noise vs. Tuning Voltage



SSB Phase Noise @ Vtune = +5V



Phase-Frequency Detector Performance Plots

Error Voltage vs. Temperature Pin = 0 dBm, Fin = 235 MHz

SSB Phase Noise Performance Pin = 0 dBm, T = 25°C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

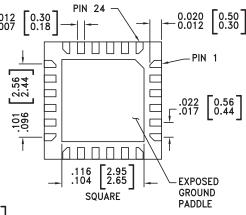
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

PHASE-LOCKED OSCILLATOR, 14.7 - 15.4 GHz

Absolute Maximum Ratings

Vcc1	+5.5 Vdc
Vcc2	+13 Vdc
Vcc3	+5.5 Vdc
Reference Input Power	+13 dBm
Vtune	0 to +13V
Channel Temperature	135 °C
Continuous Pdiss (T = 85°C) (derate 47 mW/°C above 85°C)	2.35 W
Storage Temperature	-55 to +125 °C
Operating Temperature	-40 to +85 °C

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS


Typical Supply Currents vs. Voltages @ 15 GHz Output

Vcc1 (V)	Icc1 (mA)
4.75	156
5.0	172
5.25	185
Vcc2 (V)	Icc2 (mA)
11.5	26
12	28
12.5	30
Vcc3 (V)	Icc3 (mA)
4.75	158
5	168
5.25	180

Outline Drawing

BOTTOM VIEW

NOTES

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC535LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H535 XXXX
HMC535LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H535</u> XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

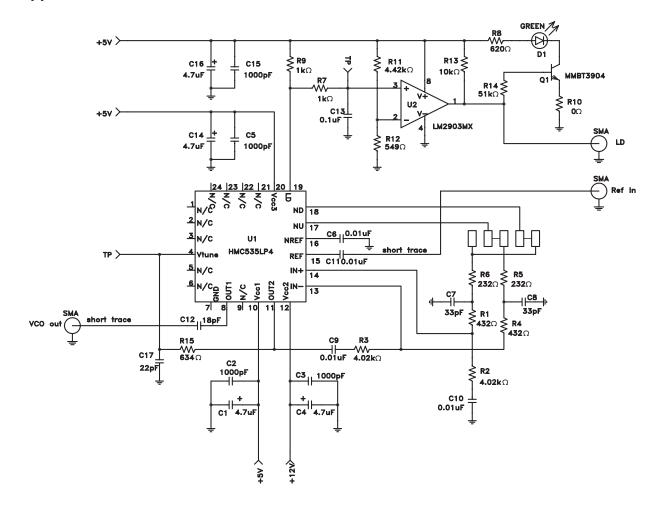
PHASE-LOCKED OSCILLATOR, 14.7 - 15.4 GHz

Pin Descriptions

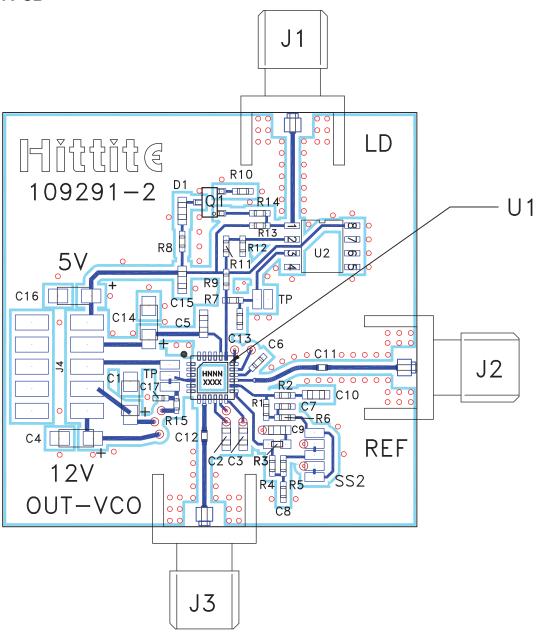
Pin Number	Function	Description	Interface Schematic
1-3, 5, 6, 21-24	N/C	No Connection. These pins may be connected to RF/ DC ground. Performance will not be affected.	
4	Vtune	VCO control voltage input.	Vtune
7, 9	GND	This pin must be connected to RF / DC ground.	→ GND —
8	RFOUT	RF output (AC coupled).	— —ORFOUT
10	Vcc1	VCO Supply Voltage, +5V.	
11	OP-AMP OUT	Op-Amp output voltage.	OP-AMP OUT
12	Vcc2	Op-amp Supply Voltage, +12V.	
13	IN-	Op-amp negative input voltage.	IN-O
14	IN+	Op-amp positive input voltage.	IN+O

PHASE-LOCKED OSCILLATOR, 14.7 - 15.4 GHz

Pin Descriptions (Continued)


Pin Number	Function	Description	Interface Schematic	
15	REF	PFD reference input. (This pin must be DC blocked externally)	REFO	
16	NREF	PFD reference input compliment. (This pin must be DC blocked externally)	NREFO Y	
17	NU	PFD not up output.	ONU/ND	
18	ND	PFD not down output.		
19	LD	PFD lock detector output.		
20	Vcc3	Digital circuitry supply voltage, +5V.		
Package Base	GND	Package bottom has an exposed metal paddle that must be connected to RF / DC ground.	GND	

PHASE-LOCKED OSCILLATOR, 14.7 - 15.4 GHz


Application Circuit

PHASE-LOCKED OSCILLATOR, 14.7 - 15.4 GHz

Evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

PHASE-LOCKED OSCILLATOR, 14.7 - 15.4 GHz

List of Materials for Evaluation PCB 109293 [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4	DC Pin
C1, C4, C14, C16	4.7 μF Tantalum Capacitor
C2, C3, C5, C15	1,000 pF Capacitor, 0603 Pkg.
C6, C11	0.01 μF Capacitor, 0402 Pkg.
C7, C8	33 pF Capacitor, 0402 Pkg.
C9, C10	0.01 μF Capacitor, 0603 Pkg.
C12	18 pF Capacitor, 0402 Pkg.
C13	0.1 μF Capacitor, 0402 Pkg.
C17	22 pF Capacitor, 0402 Pkg.
R1, R4	432 Ohm Resistor, 0402 Pkg.
R2, R3	4.02 k Ohm Resistor, 0402 Pkg.
R5, R6	232 Ohm Resistor, 0402 Pkg.
R7, R9	1k Ohm Resistor, 0402 Pkg.
R8	620 Ohm Resistor, 0402 Pkg.
R10	0 Ohm Resistor, 0402 Pkg.
R11	4.42 k Ohm Resistor, 0402 Pkg.
R12	549 Ohm Resistor, 0402 Pkg.
R13	10 k Ohm Resistor, 0402 Pkg.
R14	51 k Ohm Resistor, 0402 Pkg.
R15	634 Ohm Resistor, 0402 Pkg.
D1	Green LED, 0603 Pkg.
Q1	MMBT3904, SOT26 Pkg.
U1	HMC535LP4 / HMC535LP4E PLO
U2	LM2903MX
PCB [2]	109291 Eval Board
	•

^[1] Reference this number when ordering complete evaluation PCB

^[2] Circuit Board Material: Rogers 4350