

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





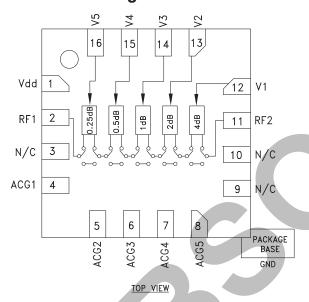




## HMC539LP3 / 539LP3E

v00.0605




## 0.25 dB LSB GaAs MMIC 5-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 4 GHz

#### Typical Applications

The HMC539LP3 / HMC539LP3E is ideal for both RF and IF applications:

- Cellular Infrastructure
- ISM, MMDS, WLAN, WiMAX, WiBro
- Microwave Radio & VSAT
- Test Equipment and Sensors

#### **Functional Diagram**



#### **Features**

0.25 dB LSB Steps to 7.75 dB ± 0.05 dB Typical Step Error Low Insertion Loss: 0.7 dB High IP3: +50 dBm Single Control Line Per Bit TTL/CMOS Compatible Control Single +5V Supply 3x3 mm SMT Package

#### **General Discription**

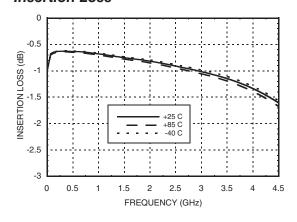
The HMC539LP3 & HMC539LP3E are broadband 5-bit GaAs IC digital attenuators in low cost leadless surface mount packages. This single positive control line per bit digital attenuator utilizes an off chip AC ground capacitor for near DC operation, making it suitable for a wide variety of RF and IF applications. Covering DC to 4 GHz, the insertion loss is less than 0.7 dB typical. The attenuator bit values are 0.25 (LSB), 0.5, 1, 2, and 4 dB for a total attenuation of 7.75 dB. Attenuation accuracy is excellent at ± 0.05 dB typical step error. The attenuator also features a high IIP3 of +50 dBm. Five TTL/CMOS control inputs are used to select each attenuation state. A single Vdd bias of +5V is required.

#### Electrical Specifications,

 $T_A = +25^{\circ}$  C, With Vdd = +5V & VctI = 0/+5V (Unless Otherwise Noted)

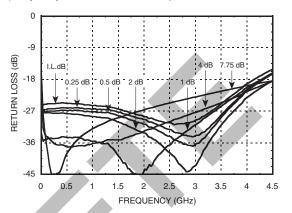
| Parameter                                                                    | Frequency (GHz)                                | Min.                                                                               | Тур.              | Max.              | Units          |
|------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|-------------------|-------------------|----------------|
| Insertion Loss                                                               | DC - 1.5 GHz<br>1.5 - 3.0 GHz<br>3.0 - 4.0 GHz |                                                                                    | 0.7<br>1.0<br>1.3 | 1.0<br>1.3<br>1.7 | dB<br>dB<br>dB |
| Attenuation Range                                                            | DC - 4 GHz                                     |                                                                                    | 7.75              |                   | dB             |
| Return Loss (RF1 & RF2, All Atten. States)                                   | DC - 3 GHz<br>3.0 - 4.0 GHz                    |                                                                                    | 25<br>20          |                   | dB<br>dB       |
| Attenuation Accuracy: (Referenced to Insertion Loss)  All States             | DC - 3 GHz<br>3.0 - 4.0 GHz                    | $\pm$ (0.2 + 2% of Atten. Setting) Max.<br>$\pm$ (0.2 + 4% of Atten. Setting) Max. |                   | dB<br>dB          |                |
| Input Power for 0.1 dB Compression                                           | 0.1 - 4.0 GHz                                  |                                                                                    | 28                |                   | dBm            |
| Input Third Order Intercept Point<br>(Two-Tone Input Power= 0 dBm Each Tone) | 0.1 - 4.0 GHz                                  |                                                                                    | 50                |                   | dBm            |
| Switching Characteristics                                                    | DC - 4 GHz                                     |                                                                                    |                   |                   |                |
| tRISE, tFALL (10/90% RF)<br>tON, tOFF (50% CTL to 10/90% RF)                 | DC - 4 GHZ                                     |                                                                                    | 48<br>52          |                   | ns<br>ns       |

## **ANALOG**DEVICES


### HMC539LP3 / 539LP3E

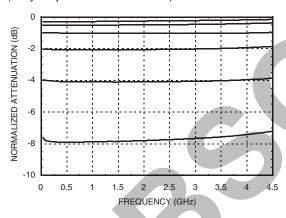
v00.0605

# ROHS V

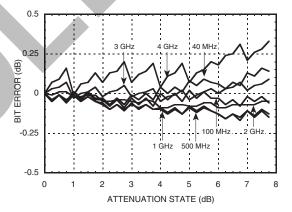

# 0.25 dB LSB GaAs MMIC 5-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 4 GHz

#### Insertion Loss



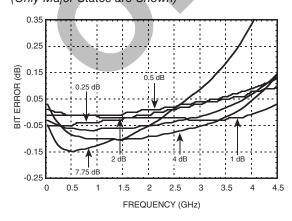

### Return Loss RF1, RF2

(Only Major States are Shown)



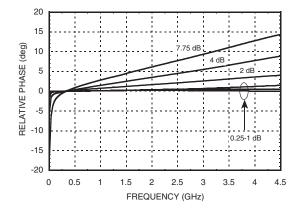

#### **Normalized Attenuation**

(Only Major States are Shown)




#### Bit Error vs. Attenuation State




#### Bit Error vs. Frequency

(Only Major States are Shown)

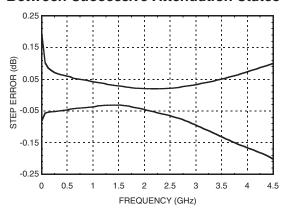


#### Relative Phase vs. Frequency

(Only Major States are Shown)






### HMC539LP3 / 539LP3E

v00.0605



# 0.25 dB LSB GaAs MMIC 5-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 4 GHz

#### Worst Case Step Error Between Successive Attenuation States



#### Bias Voltage & Current

| $Vdd = +5.0 \ Vdc \pm 10\%$ |                    |  |  |  |
|-----------------------------|--------------------|--|--|--|
| Vdd<br>(VDC)                | Idd (Typ.)<br>(mA) |  |  |  |
| +4.5                        | 3.3                |  |  |  |
| +5.0                        | 3.5                |  |  |  |
| +5.5                        | 3.7                |  |  |  |

#### **Control Voltage**

| State           | Bias Condition                 |
|-----------------|--------------------------------|
| Low             | 0 to +0.8V @ -5 uA Typ.        |
| High            | +2.0 to + 5.0 Vdc @ 30 uA Typ. |
| Note: Vdd = +5V |                                |

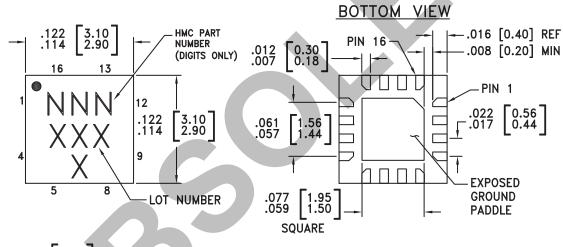
#### **Truth Table**

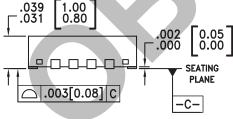
| Control Voltage Input |            |            |              | Attenuation   |                    |  |
|-----------------------|------------|------------|--------------|---------------|--------------------|--|
| V1<br>4 dB            | V2<br>2 dB | V3<br>1 dB | V4<br>0.5 dB | V5<br>0.25 dB | State<br>RF1 - RF2 |  |
| High                  | High       | High       | High         | High          | Reference<br>I.L.  |  |
| High                  | High       | High       | High         | Low           | 0.25 dB            |  |
| High                  | High       | High       | Low          | High          | 0.5 dB             |  |
| High                  | High       | Low        | High         | High          | 1 dB               |  |
| High                  | Low        | High       | High         | High          | 2 dB               |  |
| Low                   | High       | High       | High         | High          | 4 dB               |  |
| Low                   | Low        | Low        | Low          | Low           | 7.75 dB            |  |

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.






# 0.25 dB LSB GaAs MMIC 5-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 4 GHz


#### **Absolute Maximum Ratings**

| RF Input Power (DC - 4 GHz)                                     | +29 dBm (T = +85 °C) |
|-----------------------------------------------------------------|----------------------|
| Control Voltage Range (V1 to V5)                                | -1V to Vdd +1V       |
| Bias Voltage (Vdd)                                              | +7.0 Vdc             |
| Channel Temperature                                             | 150 °C               |
| Continuous Pdiss (T = 85 °C)<br>(derate 12.0 mW/°C above 85 °C) | 0.781 W              |
| Thermal Resistance                                              | 83 °C/W              |
| Storage Temperature                                             | -65 to +150 °C       |
| Operating Temperature                                           | -40 to +85 °C        |
| ESD Sensitivity (HBM)                                           | Class 1A             |



#### **Outline Drawing**





#### NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

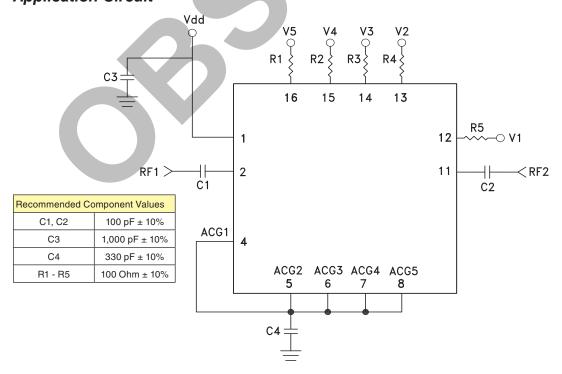
#### **Package Information**

| Part Number | Package Body Material                              | Lead Finish   | MSL Rating | Package Marking [3] |
|-------------|----------------------------------------------------|---------------|------------|---------------------|
| HMC539LP3   | Low Stress Injection Molded Plastic                | Sn/Pb Solder  | MSL1 [1]   | 539<br>XXXX         |
| HMC539LP3E  | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2]   | <u>539</u><br>XXXX  |

- [1] Max peak reflow temperature of 235  $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX






#### v00.0605

# 0.25 dB LSB GaAs MMIC 5-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 4 GHz

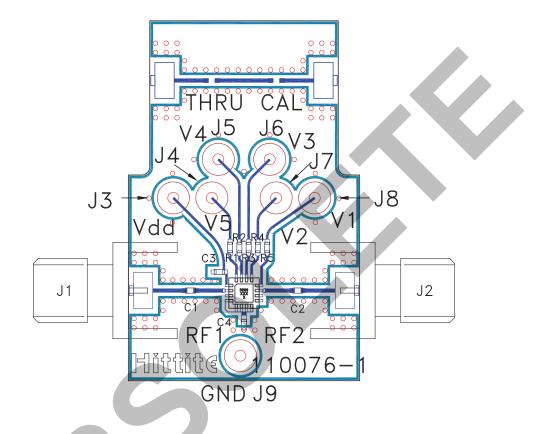
#### **Pin Descriptions**

| Pin Number | Function    | Description                                                                                                                             | Interface Schematic   |
|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1          | Vdd         | Supply Voltage.                                                                                                                         |                       |
| 2, 11      | RF1, RF2    | This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required. Select value based on lowest frequency of operation.    | RF1 RF2               |
| 3, 9, 10   | N/C         | These pins should be connected to PCB RF ground to maximize performance.                                                                |                       |
| 4 - 8      | ACG1 - ACG5 | External capacitor to ground is required. Select value for lowest frequency of operation. Place capacitor as close to pins as possible. |                       |
| 12 - 16    | V1 - V5     | See truth table and control voltage table.                                                                                              | 500 142K<br>(V1-V5) = |
|            | GND         | Package bottom has an exposed metal paddle that must be connected to RF Ground.                                                         | ○ GND<br>=            |

#### **Application Circuit**



## **ANALOG**DEVICES


DEVICES



# 0.25 dB LSB GaAs MMIC 5-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 4 GHz

HMC539LP3 / 539LP3E

#### **Evaluation PCB**



#### List of Materials for Evaluation PCB 110078 [1]

| Item    | Description                                  |
|---------|----------------------------------------------|
| J1 - J2 | PCB Mount SMA Connector                      |
| J3 - J9 | DC Pin                                       |
| C1, C2  | 100 pF Capacitor, 0402 Pkg.                  |
| C3      | 1000 pF Capacitor, 0402 Pkg.                 |
| C4      | 330 pF Capacitor, 0402 Pkg.                  |
| R1 - R5 | 100 Ohm Resistor 0402                        |
| U1      | HMC539LP3 / HMC539LP3E<br>Digital Attenuator |
| PCB [2] | 110076 Evaluation PCB                        |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.