

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

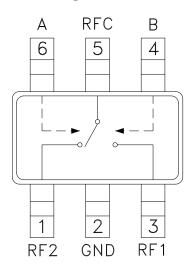
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaAs MMIC T/R SWITCH, DC - 4 GHz

Typical Applications

The HMC544 / HMC544E is ideal for:

- Cellular/PCS/3G Infrastructure
- Basestations & Repeaters
- WLAN, WiMAX and WiBro
- Microwave and Fixed Wireless Radios


Features

Very Low Insertion Loss: 0.2 dB @ 1.0 GHz

High Input P1dB: +39 dBm High Input IP3: +55 dBm

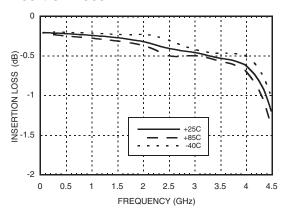
Positive Control: 0/+3V to 0/+5V Compact SOT26 SMT Package

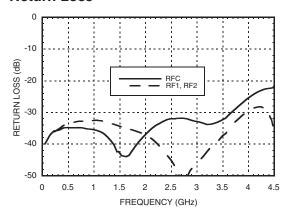
Functional Diagram

General Description

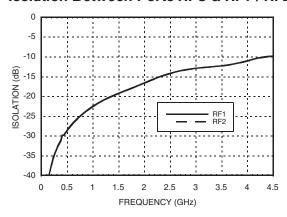
The HMC544 & HMC544E are low cost SPDT switches in 6-lead SOT26 packages for use in transmitreceive applications which require very low insertion loss at medium power levels. These devices can control signals from DC to 4.0 GHz and are especially suited for 450, 900, 1900, 2300, and 2700 MHz applications with <0.5 dB insertion loss. This GaAs PHEMT design provides exceptional linearity performance of +36 dBm 1dB compression point and +55 dBm third order intercept at +3 volt bias. RF1 and RF2 are reflective opens when "Off". On-chip circuitry allows positive control operation at very low DC current.

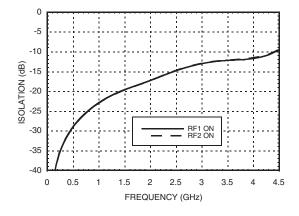
Electrical Specifications, $T_A = +25^{\circ}$ C, Vctl = 0/+3 Vdc, 50 Ohm System

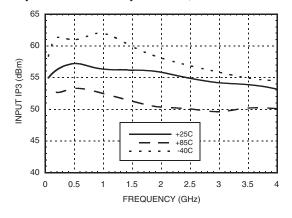

Parameter	Frequency	Min.	Тур.	Max.	Units
Insertion Loss	DC - 1.0 GHz DC - 2.5 GHz DC - 3.0 GHz DC - 4.0 GHz		0.25 0.4 0.5 0.7	0.5 0.7 0.8 1.0	dB dB dB dB
Isolation	DC - 1.0 GHz DC - 2.5 GHz DC - 3.0 GHz DC - 4.0 GHz	18 10 9 8	23 14 13 12		dB dB dB dB
Return Loss	DC - 4.0 GHz		32		dB
Input Power for 1 dB Compression 0/+5V Control 0/+3V Control	0.3 - 4.0 GHz	36 33	39 36		dBm dBm
Input Third Order Intercept (Two-Tone Input Power = +27 dBm Each Tone)	0.3 - 4.0 GHz		55		dBm
Switching Characteristics	DC - 4.0 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)			70 140		ns ns

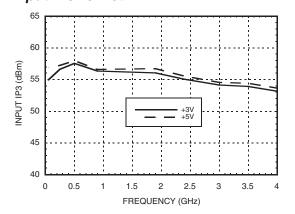


GaAs MMIC T/R SWITCH, DC - 4 GHz


Insertion Loss


Return Loss

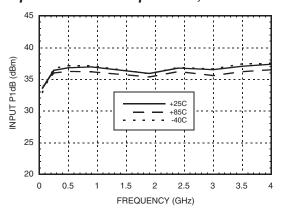

Isolation Between Ports RFC & RF1 / RF2


Isolation Between Ports RF1 & RF2

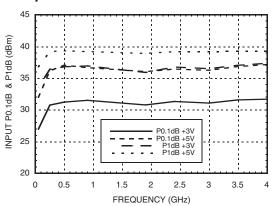
Input IP3 vs. Temperature, Vctl = 0/+3V

Input IP3 vs. Vctl

10



GaAs MMIC T/R SWITCH, DC - 4.0 GHz


RoHS√

Input P1dB vs. Temperature, Vctl = 0/+3V

v00.0206

Compression vs. Vctl

Truth Table

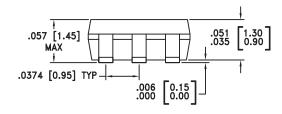
Control Input		Signal Path		
А	В	RFC to RF1	RFC to RF2	
Low	High	On	Off	
High	Low	Off	On	

Control Voltages

State Bias Condition	
Low	0 to 0.2 Vdc @ 1 μA Typical
+3 Vdc @ 0.5 µA Typical to +5 Vdc @ 2 µA Typical (±0.2 Vdc	

GaAs MMIC T/R SWITCH, DC - 4.0 GHz


Absolute Maximum Ratings


RF Input Power (Vctl = 0/+5V)	+39 dBm
Control Voltage Range (A & B)	-0.2 to +12 Vdc
Hot Switch Power Level (Vctl = 0/+5V)	+39 dBm
Channel Temperature	150 °C
Continuous Pdiss (T= 85 °C) (derate 7.14 mW/ °C above 85°C)	0.465 W
Thermal Resistance	140 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

DC blocks are required at ports RFC, RF1 and RF2.

Outline Drawing

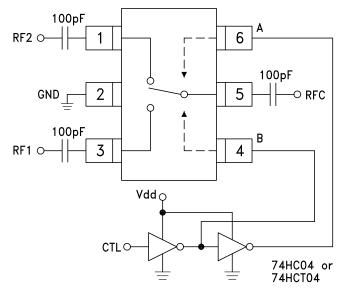
NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- M DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC544	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H544 XXXX	
HMC544E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	544E XXXX	


- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

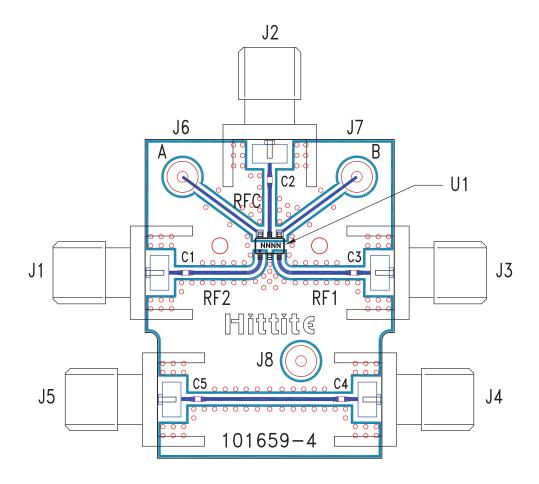
GaAs MMIC T/R SWITCH, DC - 4.0 GHz

Typical Application Circuit

Notes:

- 1. Set logic gate Vdd = +3V to +5V and use HCT series logic to provide a TTL driver interface.
- 2. Control inputs A/B can be driven directly with CMOS logic (HC) with Vdd of +3V to +5V applied to the CMOS logic gates.
- 3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 3, 5	RF2, RF1, RFC	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
2	GND	This pin must be connected to RF/DC ground.	⊖ GND =
4	В	See truth and control voltage tables.	R
6	А	See truth and control voltage tables.	c

GaAs MMIC T/R SWITCH, DC - 4.0 GHz

Evaluation Circuit Board

List of Materials for Evaluation PCB 101675 [1]

Item	Description
J1 - J5	PCB Mount SMA RF Connector
J6 - J8	DC Pin
C1 - C5	330 pF capacitor, 0402 Pkg.
U1	HMC544 / HMC544E SPDT Switch
PCB ^[2]	101659 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

^[2] Circuit Board Material: Rogers 4350