imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

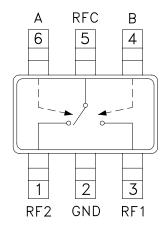
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC545A / 545AE


GaAs MMIC SPDT SWITCH, DC - 3 GHz

Typical Applications

The HMC545A / HMC545AE is ideal for:

- Cellular/3G Infrastructure
- Private Mobile Radio Handsets
- WLAN, WiMAX & WiBro
- Automotive Telematics
- Test Equipment

Functional Diagram

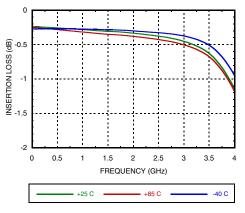
Features

Low Insertion Loss: 0.27 dB High Input IP3: +54 dBm Low DC Power Consumption Positive Control: 0/+3V to 0/+8V Ultra Small Package: SOT26

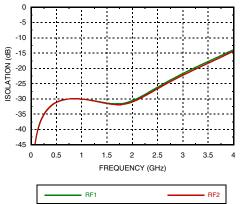
General Description

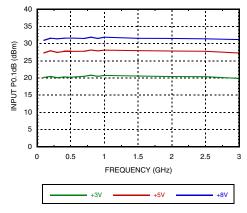
The HMC545A and HMC545AE are low-cost SPDT switches in 6-lead SOT26 plastic packages for use in general switching applications which require very low insertion loss and very small size. With 0.25 dB typical loss, these devices can control signals from DC to 3.0 GHz and are especially suited for IF and RF applications including Cellular/3G, ISM, automotive and portables. The design provides exceptional insertion loss performance, ideal for filter and receiver switching. RF1 and RF2 are reflective shorts when "Off". The two control voltages require a minimal amount of DC current and offer compatibility with CMOS and some TTL logic families.

Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 1.0 GHz DC - 2.5 GHz DC - 3.0 GHz		0.27 0.3 0.4	0.4 0.5 0.7	dB dB dB
Isolation		DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz	26 22 19	31 26 22		dB dB dB
Return Loss		DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz		24 20 19 17		dB dB dB dB
Input Power for 1 dB Compression	Vctl = 0/+3V Vctl = 0/+5V Vctl = 0/+8V	0.5 - 3.0 GHz	20 27 30	23 30 33		dBm dBm dBm
Input Third Order Intercept (Two-tone Input Power = +17 dBm Each Tone)	VctI = 0/+3V VctI = 0/+5V VctI = 0/+8V	0.5 - 3.0 GHz		31 51 54		dBm dBm dBm
Switching Characteristics		DC - 3.0 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)				70 90		ns ns

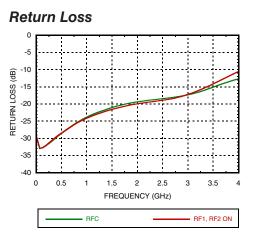

Electrical Specifications $T_{a} = +25^{\circ}$ C, Vctl = 0/+5 Vdc (Unless Otherwise Stated), 50 Ohm System

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

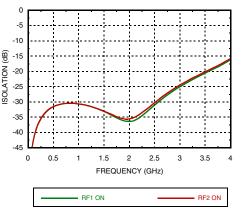



Insertion Loss

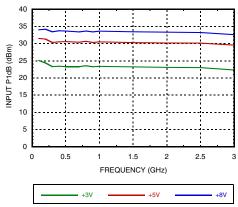
Isolation Between Ports RFC and RF1/RF2



Input P0.1dB vs. Vctl

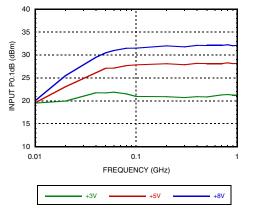


HMC545A / 545AE v01.0615

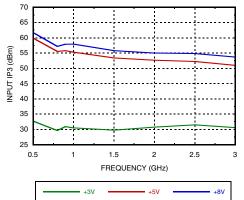

GaAs MMIC SPDT SWITCH, DC - 3 GHz

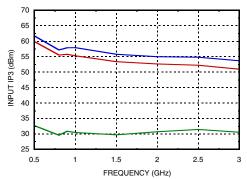
Isolation Between Ports RF1 and RF2

Input P1dB vs. Vctl

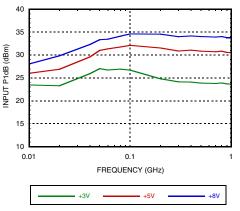


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




Low Frequency Input P0.1dB vs. Vctl

Input Third Order Intercept Point vs. Control Voltage


Insertion Loss, T = +25 °C

HMC545A / 545AE

GaAs MMIC SPDT SWITCH, DC - 3 GHz

Low Frequency Input P1dB vs. Vctl

Absolute Maximum Ratings

•
+34 dBm
-0.2 to +12 Vdc
+32 dBm
150 °C
0.1 W
169°C/W
-65 to +150 °C
-40 to +85 °C
Class 1A

DC blocks are required at ports RFC, RF1 and RF2.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

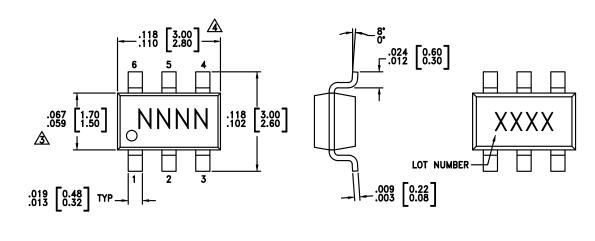
Truth Table

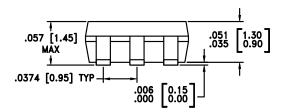
Control Input		Control Current		
А	В	RFC to RF1	RFC to RF2	
Low	High	Off	On	
High	Low	On	Off	

Control Voltages

State	Bias Condition		
Low	0 to 0.2 Vdc @ 1 µA Typical		
High	+3 Vdc @ 0.5 μA Typical to +8 Vdc @ 14 μA Typical (±0.2 Vdc)		

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




HMC545A / 545AE

GaAs MMIC SPDT SWITCH, DC - 3 GHz

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

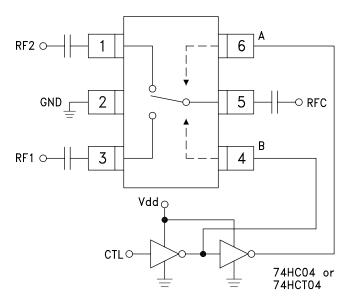
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking
HMC545A	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H545A
HMC545AE RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 ^[2]	545AE

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 °C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



HMC545A / 545AE

ROHS V

GaAs MMIC SPDT SWITCH, DC - 3 GHz

Typical Application Circuit

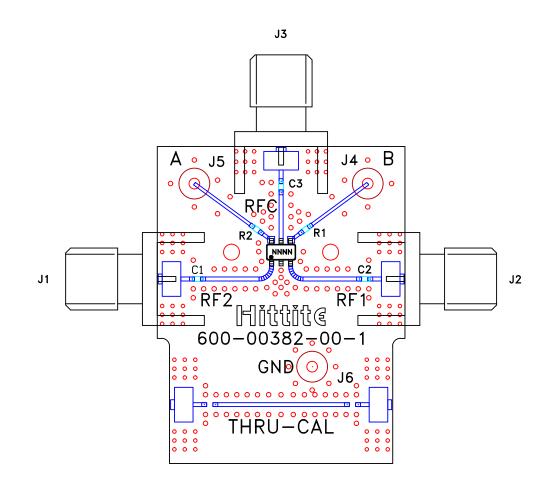
Notes:

- 1. Set logic gate Vdd = +3V to +5V and use HCT series logic to provide a TTL driver interface.
- 2. Control inputs A/B can be driven directly with CMOS logic (HC) with Vdd of +3V to +8V applied to the CMOS logic gates.
- 3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
- 4. Highest RF signal power capability is achieved with Vdd = +8V and A/B set to 0/+8V.

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 5	RF2, RF1, RFC	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
2	GND	This pin must be connected to RF/DC ground.	
4	В	See truth and control voltage tables.	R
6	А	See truth and control voltage tables.	± c

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



GaAs MMIC SPDT SWITCH, DC - 3 GHz

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC545A [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J6	DC Pin
R1 - R2	1K Ohm resistor, 0402 Pkg.
C1 - C3	330 pF capacitor, 0402 Pkg.
U1	HMC545A / HMC545AE SPDT Switch
PCB [2]	101659 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.