

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaAs MMIC SPST FAILSAFE SWITCH, DC - 6 GHz

Typical Applications

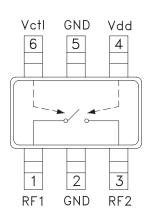
The HMC550 / HMC550E is ideal for:

- RFID & Electronic Toll Collection (ETC)
- Tags, Handsets & Portables
- ISM, WLAN, WiMAX & WiBro
- Automotive Telematics
- Test Equipment

Features

Failsafe Operation - "On" When Unpowered

Wide Vdd Range: 1.2V to 5V


Very Low On State Current: 200 nA

Low Insertion Loss: 0.7 dB

High IP3: +52 dBm

Compact SOT26 SMT Package

Functional Diagram

General Description

The HMC550 and HMC550E are low-cost SPST Failsafe switches in 6-lead SOT26 plastic packages for use in switching applications which require low insertion loss and very low current consumption. With 0.7 dB typical loss, these devices can control signals from DC to 6 GHz and are especially suited for IF and RF applications including RFID, ISM, automotive and battery powered tags and portables. RF1 and RF2 are reflective opens when "Off". The switch requires a minimal amount of DC current in the "On" state, and offers compatibility with CMOS and some TTL logic families. The failsafe topology results in the switch being normally "On", i.e. low insertion loss from RF1 to RF2, when no DC bias is applied.

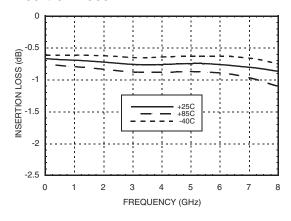
Electrical Specifications

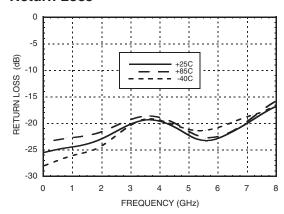
$T_A = +25^{\circ}$ C, Vdd = +3.3 Vdc, Vctl = 0/+3.3 Vdc (Unless Otherwise Stated), 50 Ohm System

Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 6.0 GHz		0.7	0.9	dB
Isolation		DC - 2.0 GHz DC - 6.0 GHz	15 8	25 12		dB dB
Return Loss		DC - 6.0 GHz		20		dB
Input Power for 0.1 dB Compression	Vctl = 0/+3.3V	0.5 - 6.0 GHz	23	27		dBm
Input Third Order Intercept (Two-tone Input Power = +17 dBm Each Tone)	VctI = 0/+3.3V	0.5 - 6.0 GHz		52		dBm
	FALL (10/90% RF) CTL to 10/90% RF)	DC - 6.0 GHz		40 50		ns ns

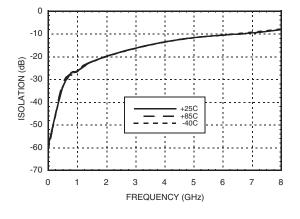
$T_A = +25^{\circ}$ C, Vctl & Vdd Unpowered

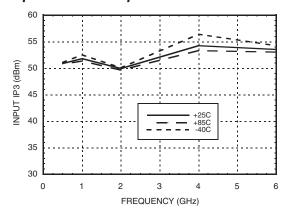
A					
Insertion Loss	DC - 6.0 GHz		0.7	0.9	dB
Return Loss	DC - 6.0 GHz		20		dB
Input Power for 0.1 dB Compression	0.5 - 6.0 GHz	23	27		dBm
Input Third Order Intercept (Two-tone Input Power = +17 dBm Each Tone)	0.5 - 0.6 GHz		52		dBm

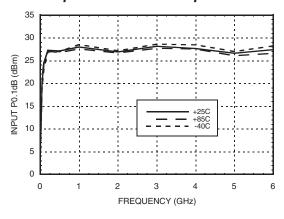

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



GaAs MMIC SPST FAILSAFE SWITCH, DC - 6 GHz

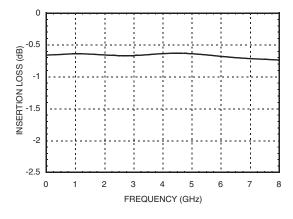

Insertion Loss

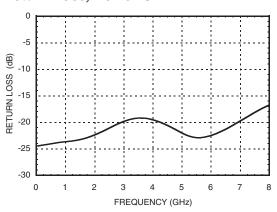

Return Loss


Isolation

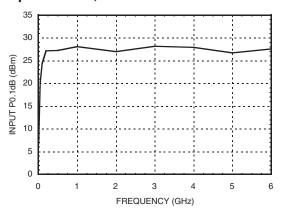
Input IP3 vs. Temperature

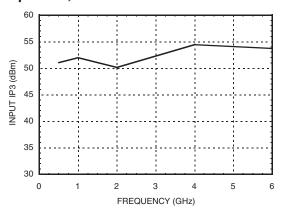
Input P0.1dB vs. Temperature





GaAs MMIC SPST FAILSAFE SWITCH, DC - 6 GHz


Insertion Loss, Power Off


Return Loss, Power Off

Input P0.1dB, Power Off

Input IP3, Power Off

Operating Conditions

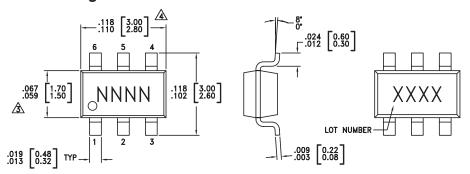
Vdd & VctI = 0 Vdc to +5 Vdc; VctI_max = Vdd + 0.2 Vdc; Idd & IctI = 0.1 μ A, Typical

Conditions	Vdd - Vctl ≥ + 1.2 Vdc	-0.2 Vdc < Vdd - Vctl < +0.4 Vdc
RF1 - RF2	OFF	ON

Examples of Typical Operating Conditions - Idd & Ictl = 0.1 μ A, Typical

Vdd (V)	0 (Unpowered)	1.	.2	2	.2	3	.3	5	.0
VctI (V)	0 (Unpowered)	0	> 0.8	< 1.0	> 1.8	< 2.1	> 2.9	< 3.8	> 4.6
RF1 - RF2	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON

GaAs MMIC SPST FAILSAFE SWITCH, DC - 6 GHz


Absolute Maximum Ratings

RF Input Power (Vctl = 0/+3.3V)	+34 dBm
Supply Voltage (Vdd)	+12 Vdc
Control Voltage Range (Vctl)	-0.2 to +(Vdd + 0.2) Vdc
Hot Switch Power Level (Vctl = 0/+3.3V)	+35 dBm
Channel Temperature	150 °C
Continuous Pdiss (T= 85 °C) (derate 6.67 mW/ °C above 85°C)	433 mW
Thermal Resistance	150 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
	`

DC blocks are required at ports RF1 and RF2.

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- ⚠ DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- △ DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking
HMC550	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H550
HMC550E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	550E

^[1] Max peak reflow temperature of 235 $^{\circ}\text{C}$

^[2] Max peak reflow temperature of 260 $^{\circ}\text{C}$



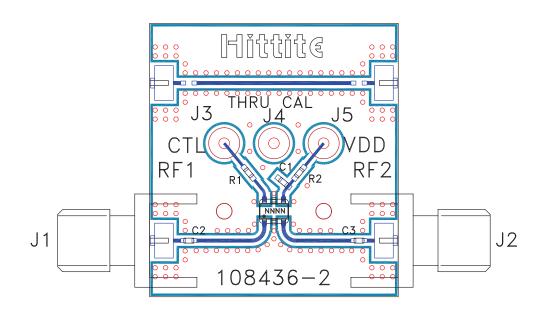
GaAs MMIC SPST FAILSAFE SWITCH, DC - 6 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3	RF1, RF2	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
2, 5	GND	These pins must be connected to RF ground.	⊖ GND =
4	Vdd	Supply Voltage	
6	Vctl	See truth and control voltage tables.	R c

Typical Application Circuit

Note:


1. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.

Evaluation PCB

List of Materials for Evaluation PCB 109266 [1]

Item	Description	
J1 - J2	PCB Mount SMA RF Connector	
J3 - J5	DC Pin	
C1	1,000 pF Capacitor, 0402 Pkg.	
C2 - C3	100 pF capacitor, 0402 Pkg.	
R1, R2	100 Ohm Resistor, 0402 Pkg.	
U1	HMC550 / HMC550E SPST Switch	
PCB [2]	108436 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.