

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

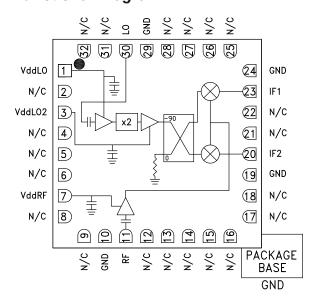
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

v06.0514


GaAs MMIC I/Q DOWNCONVERTER 17 - 21 GHz

Typical Applications

The HMC570LC5 is ideal for:

- Point-to-Point and Point-to-Multi-Point Radio
- Military Radar, EW & ELINT
- Satellite Communications

Functional Diagram

Features

10 dB Conversion Gain Image Rejection: 18 dB 2 LO to RF Isolation: 65 dB

Noise Figure: 3 dB Input IP3: +2 dBm

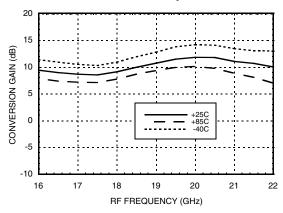
32 Lead 5x5mm SMT Package: 25mm²

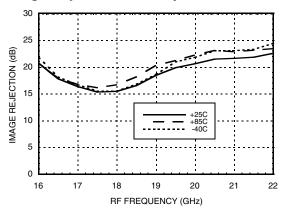
General Description

The HMC570LC5 is a compact GaAs MMIC I/Q downconverter in a leadless RoHS compliant SMT package. This device provides a small signal conversion gain of 10 dB with a noise figure of 3 dB and 18 dB of image rejection across the frequency band. The HMC570LC5 utilizes an LNA followed by an image reject mixer which is driven by an active x2 multiplier. The image reject mixer eliminates the need for a filter following the LNA, and removes thermal noise at the image frequency. I and Q mixer outputs are provided and an external 90° hybrid is needed to select the required sideband. The HMC570LC5 is a much smaller alternative to hybrid style image reject mixer downconverter assemblies, and it eliminates the need for wire bonding by allowing the use of surface mount manufacturing techniques.

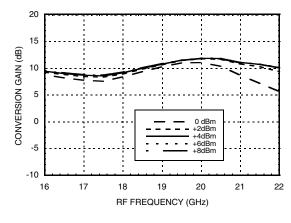
Electrical Specifications, $T_A = +25$ °C, IF = 100 MHz, LO = +4 dBm, Vdd = 3.5 Vdc*

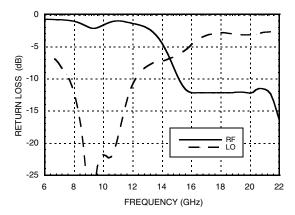
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF		17.7 - 19.7			17 - 21		GHz
Frequency Range, LO	7 - 12		7 - 12			GHz	
Frequency Range, IF		DC - 3.5		DC - 3.5			GHz
Conversion Gain (As IRM)	9	10		8	10		dB
Noise Figure		3			3		dB
Image Rejection	14	17		14	22		dB
1 dB Compression (Input)	-5	-4		-10	-5		dBm
2 LO to RF Isolation	55	70		50	60		dB
2 LO to IF Isolation	35	50		35	45		dB
IP3 (Input)	-5	-2		-5	+2		dBm
Amplitude Balance		0.5			0.5		dB
Phase Balance		12			4		Deg
Total Supply Current		125	165		125	165	mA

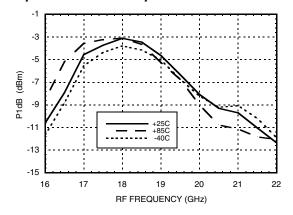

^{*}Data taken as IRM with external IF Hybrid

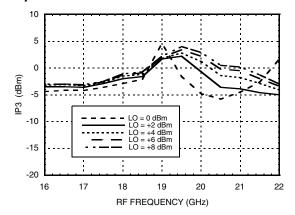

Data Taken As IRM With External IF Hybrid

v06.0514


Conversion Gain vs. Temperature

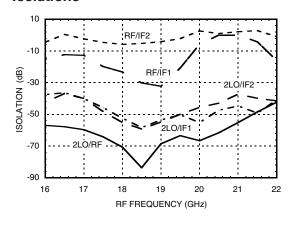

Image Rejection vs. Temperature

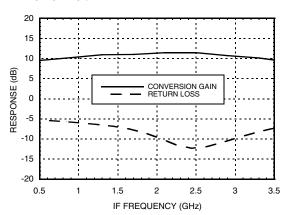

Conversion Gain vs. LO Drive


Return Loss

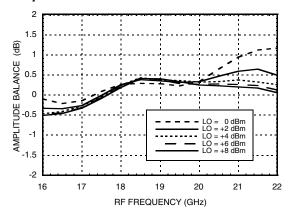
Input P1dB vs. Temperature

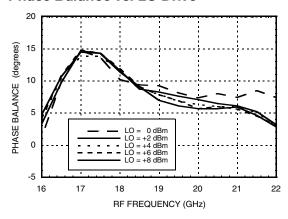
Input IP3 vs. LO Drive

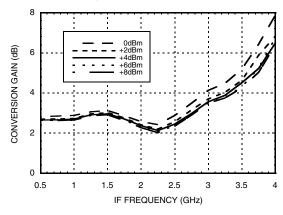


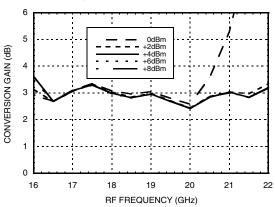


Quadrature Channel Data Taken Without IF Hybrid


Isolations


IF Bandwidth*


Amplitude Balance vs. LO Drive


Phase Balance vs. LO Drive

Noise Figure vs. LO Drive, LO Frequency = 8.6 GHz

Noise Figure vs. LO Drive, IF Frequency = 100 MHz

^{*} Conversion gain data taken with external IF hybrid, LO frequency fixed at 8.6 GHz and RF varied

v06.0514

GaAs MMIC I/Q DOWNCONVERTER 17 - 21 GHz

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	xx	21	25	32	35
1	32	26	0	25	41
2	54	81	69	61	46
3	xx	xx	xx	79	79
4	xx	xx	xx	xx	xx

RF = 18 GHz @ -20 dBm LO = 8.5 GHz @ +4 dBm Data taken without IF hybrid

All values in dBc below IF power level (1RF -2LO = 1 GHz)

Absolute Maximum Ratings

RF	2 dBm
LO Drive	13 dBm
Vdd	5.5V
Channel Temperature	175°C
Continuous Pdiss (T=85°C) (derate 9.56 mW/°C above 85°C)	860 mW
Thermal Resistance (R _{TH}) (channel to package bottom)	104.6 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C
ESD Sensitivity (HBM)	Class 1B

Outline Drawing

BOTTOM VIEW 0.197±.005 PIN 32 .014 0.36 .009 0.24 .013 [0.32] [5.00±.13] 32 25 REF PIN 1 \Box 24 1 \Box 0.197±.005 [5.00±.13] H570 \Box \square XXXX \Box D \Box 8 17 16 .138 [3.50] **EXPOSED** SQUARE LOT NUMBER **GROUND** 0.044 [1.12] .161 [4.10] **PADDLE** MAX **SEATING** PLANE -c-NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30 80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKLE
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

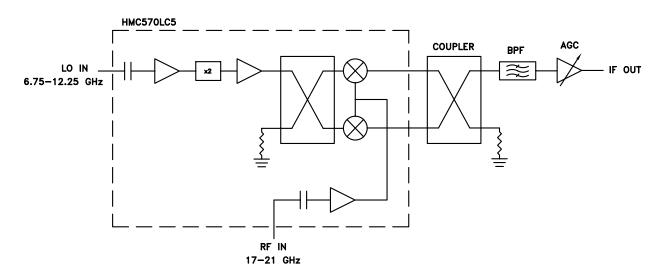
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC570LC5	Alumina, White	Gold over Nickel	MSL3 [1]	H570 XXXX

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX

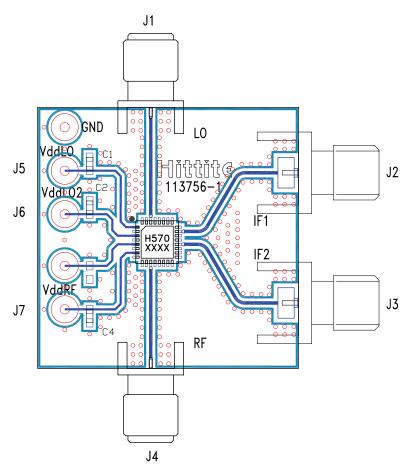
v06.0514



GaAs MMIC I/Q DOWNCONVERTER 17 - 21 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	VddLO	Power supply for first stage of LO amplifier.	VddLO ○───── ───────────
2, 4 - 6, 8, 9, 12 - 18, 21, 22, 25 - 28, 31, 32	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
3	VddLO2	Power supply for second stage of LO amplifier.	VddLO2 ○
7	VddRF	Power supply for RF LNA.	VddRF ○───── ──────────── ───
10, 19, 24, 29	GND	These pins and ground paddle must be connected to RF/DC ground.	GND =
11	RF	This pin is AC coupled and matched to 50 Ohms	RF ○
20	IF2	This pin is DC coupled for applications not requiring operation to DC. This port should be DC blocked externally using a series capacitor whose value has	IF1,IF2 O
23	IF1	been chosen to pass the necessary frequency range. For operation to DC, this pin must not sink / source more than 3 mA of current or part non-function and possible failure will result.	
30	LO	This pin is AC coupled and matched to 50 Ohms.	L0 0— —


Typical Application

Evaluation PCB

List of Materials for Evaluation PCB 113758 [1]

Item	Description	
C1 - C4	Capacitor 0603, 0.01 μF	
J1, J4	PCB Mount SMA RF Connector, SRI	
J2, J3	PCB Mount SMA Connector, Johnson	
J5 - J7	DC Pin	
U1	HMC570LC5	
PCB [2]	113756 Evaluation Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

ANALOGDEVICES

GaAs MMIC I/Q DOWNCONVERTER 17 - 21 GHz