

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

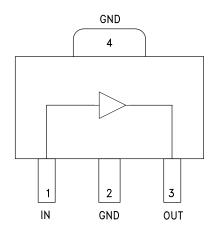
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC589AST89E

01 0516


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

Typical Applications

The HMC589AST89E is ideal for:

- Cellular / PCS / 3G
- Fixed Wireless & WLAN
- CATV, Cable Modem & DBS
- Microwave Radio & Test Equipment
- IF & RF Applications

Functional Diagram

Features

P1dB Output Power: +21 dBm

Gain: 21 dB

Output IP3: +33 dBm Single Supply: +5V

Industry Standard SOT89E Package

General Description

The HMC589AST89E is an InGaP HBT Gain Block MMIC SMT amplifier covering DC to 4 GHz and packaged in an industry standard SOT89E. The amplifier can be used as a cascadable 50 Ohm RF or IF gain stage as well as a LO or PA driver with up to +19 dBm P1dB output power for cellular/3G, FWA, CATV, microwave radio and test equipment applications. The HMC589AST89E offers 20 dB gain and +33 dBm output IP3 at 1 GHz while requiring only 82 mA from a single positive supply. The HMC589AST89E InGaP HBT gain block offers excellent output power and gain stability over temperature.

Electrical Specifications, Vs=5V, Rbias=1.8 Ohm, $T_A=+25^{\circ}$ C

Parameter			Тур.	Max.	Units
0-1-	DC - 1.0 GHz 1.0 - 2.0 GHz	19 16	21 19		dB dB
Gain	2.0 - 3.0 GHz	14	17		dB
	3.0 - 4.0 GHz	13	16		dB
Gain Variation Over Temperature	DC - 5 GHz		0.008		dB/ °C
Input Return Loss	DC - 1.0 GHz		17		dB
input Heturii Loss	1.0 - 4.0 GHz		10		dB
Output Return Loss	DC - 1.0 GHz		12		dB
Output neturn Loss	1.0 - 4.0 GHz		8		dB
Reverse Isolation	DC - 4 GHz		23		dB
	0.5 - 1.0 GHz	17.5	19		dBm
Output Power for 1 dB Compression (P1dB)	1.0 - 2.0 GHz	16	19		dBm
Output Fower for 1 db Compression (F1db)	2.0 - 3.0 GHz	16	19		dBm
	3.0 - 4.0 GHz	14.5	18		dBm
	0.5 - 1.0 GHz		33		dBm
Output Third Order Intercept (IP3)	1.0 - 2.0 GHz		32		dBm
(Pout= 0 dBm per tone, 1 MHz spacing)	2.0 - 3.0 GHz		31.5		dBm
	3.0 - 4.0 GHz		29		dBm
Noise Figure	DC - 2.0 GHz		4.0		dB
INVISE I Iguie	2.0 - 4.0 GHz		4.5		dB
Supply Current (Icq)			82	102	mA

Note: Data taken with broadband bias tee on device output.

HMC589A* PRODUCT PAGE QUICK LINKS

Last Content Update: 03/11/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

· HMC589A Evaluation Board

DOCUMENTATION

Application Notes

 AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers

Data Sheet

 HMC589AST89E: InGaP HBT Gain Block MMIC Amplifier, DC - 4 GHz Data Sheet

TOOLS AND SIMULATIONS

• HMC589A S-parameters

DESIGN RESOURCES

- HMC589A Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

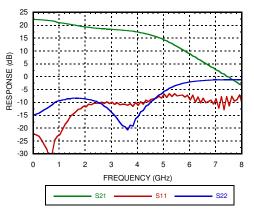
View all HMC589A EngineerZone Discussions.

SAMPLE AND BUY 🖵

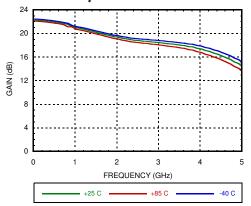
Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

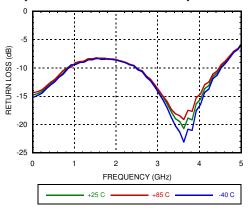

DOCUMENT FEEDBACK 🖳

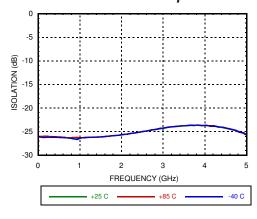
Submit feedback for this data sheet.

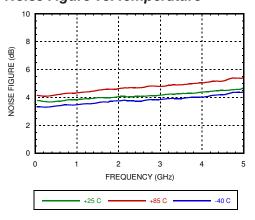


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

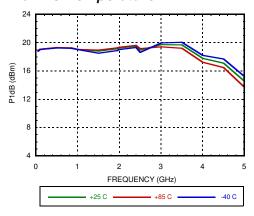

Broadband Gain & Return Loss

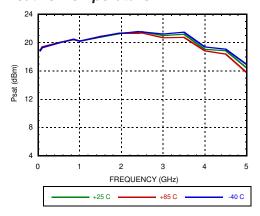

Gain vs. Temperature


Input Return Loss vs. Temperature

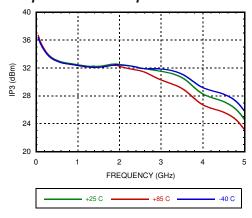

Output Return Loss vs. Temperature

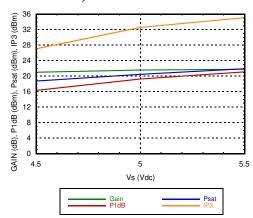
Reverse Isolation vs. Temperature

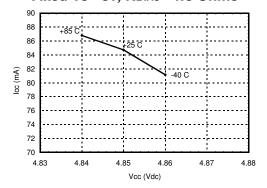

Noise Figure vs. Temperature



InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz


P1dB vs. Temperature

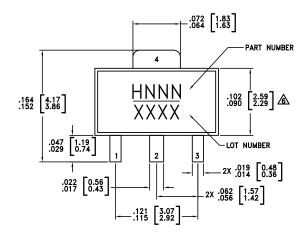

Psat vs. Temperature

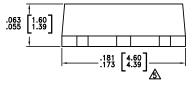

Output IP3 vs. Temperature

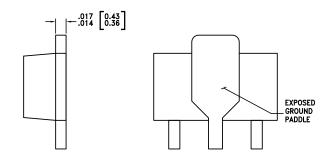
Gain, Power & OIP3 vs. Supply Voltage @ 850 MHz, Rbias = 1.8 Ohms

Vcc vs. Icc Over Temperature for Fixed Vs= 5V, RBIAS= 1.8 Ohms

/01 0516


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz


Absolute Maximum Ratings


Collector Bias Voltage (Vcc)	+5.5 Vdc	
RF Input Power (RFIN)(Vcc = +5 Vdc)	+10 dBm up to 1 GHz +8 dBm from 1-4 GHz	
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 8.4 mW/°C above 85 °C)	0.45 W	
Thermal Resistance (junction to ground paddle)	145 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 2	

Outline Drawing

NOTES:

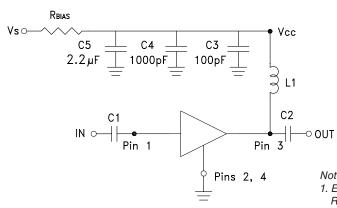
- 1. PACKAGE BODY MATERIAL:
- MOLDING COMPOUND MP-180S OR EQUIVALENT.
- 2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.
- 3. LEAD PLATING: 100% MATTE TIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]	
HMC589AST89E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [1]	<u>H589A</u> XXXX	

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX


v01.0516

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	IN	This pin is DC coupled. An off chip DC blocking capacitor is required.	OUT
3	OUT	RF output and DC Bias (Vcc) for the output stage.	
2, 4	GND	These pins and package bottom must be connected to RF/DC ground.	= GND

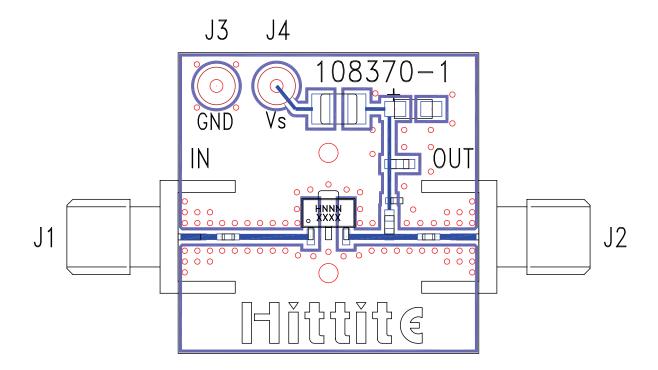
Application Circuit

- Note:
- External blocking capacitors are required on RFIN and RFOUT.
- 2. RBIAS provides DC bias stability over temperature.

Recommended Bias Resistor Values for Icc = 88 mA, Rbias = (Vs - Vcc) / Icc

Supply Voltage (Vs)	5V	6V	8V
RBIAS VALUE	1.8 Ω	13 Ω	38 Ω
RBIAS POWER RATING	1/8 W	1/4 W	½ W

Recommended Component Values for Key Application Frequencies


Component	Frequency (MHz)						
	50	900	1900	2200	2400	3500	4000
L1	270 nH	56 nH	24 nH	24 nH	15 nH	8.2 nH	8.2 nH
C1, C2	0.01 μF	100 pF					

v01.0516

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 4 GHz

Evaluation PCB [3]

List of Materials for Evaluation PCB EV1HMC589AST89 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J4	DC Pin
C1, C2	Capacitor, 0402 Pkg.
C3	100 pF Capacitor, 0402 Pkg.
C4	1000 pF Capacitor, 0603 Pkg.
C5	2.2 μF Capacitor, Tantalum
R1	Resistor, 1206 Pkg.
L1	Inductor, 0603 Pkg.
U1	HMC589AST89 / HMC589AST89E
PCB [2]	108370 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

[3] Evaluation board tuned for 1.9 GHz, 1/8W operation

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.