

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

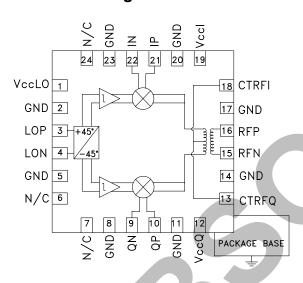
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC597LP4 / 597LP4E

v07.1213


SiGe WIDEBAND DIRECT DEMODULATOR RFIC, 100 - 4000 MHz

Typical Applications

The HMC597LP4 / HMC597LP4E is suitable for various modulation systems:

- Cellular/PCS/3G
- Base Stations & Repeaters
- GSM/GPRS, WCDMA & TD-SCDMA
- WiMAX, WiBro & Fixed Wireless

Functional Diagram

Features

High Linearity: +23 dBm IIP3 & +60 dBm IIP2

Low Noise Figure: 15 dB

High Integration: On-Chip RF Balun

General Description

The HMC597LP4(E) are highly integrated SiGe wideband direct conversion I/Q Demodulator RFICs which are ideal for high dynamic range receivers operating from 100 - 4000 MHz in cellular and broadband wireless infrastructure applications. Providing a very high level of integration compared with discrete solutions, the HMC597LP4(E) features an on-chip RF balun which allows for singled ended RF input. An off-chip capacitor allows the reconfiguration of the RF port to operate over the whole 100 - 4000 MHz band without additional off-chip components. Also ideal for software radio and other multi-band receivers, the HMC597LP4(E) demodulator is housed in a compact 4 x 4 mm SMT QFN package and delivers exceptionally high dynamic range. The LO requires -6 to +6 dBm and can be driven in single-ended mode. The I and Q output ports are differential with an output impedance of 400 Ohms, allowing direct connection to channel filters and ADCs. This device is optimized for a supply voltage of +4.5V to +5.5V and consumes 200 mA @ +5V supply.

Electrical Specifications, See Test Conditions on following page herein.

Parameter	Min.	Тур.	Max.	Units
RF Input Frequency (Direct LO)		0.1 - 4.0		
Input P1dB	nput P1dB 12			dBm
SSB Noise Figure		15		dB
Input IP3	+20	+23	+26	dBm
Input IP2		+60		dBm
Conversion Gain	-5	-3.5	-2	dB
I/Q Gain Mismatch		0.1	0.25	dB
LO to RF Leakage @ +3 dBm LO		-66		dBm
IF Port Bandwidth		600		MHz
IF Output Impedance (Diff.)		400		Ohms
LO Input Power		-6 to +6		dBm
LO/RF Return Loss		12/12		dB
Total Supply Current		200	230	mA

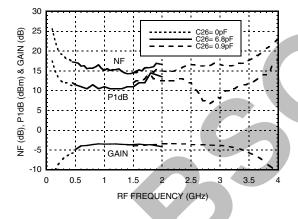
[1] Data taken at 1970 MHz RF Input frequency for two tone test, fundamental frequencies are 1970 MHz and 1971 MHz.

SiGe WIDEBAND DIRECT DEMODULATOR RFIC, 100 - 4000 MHz

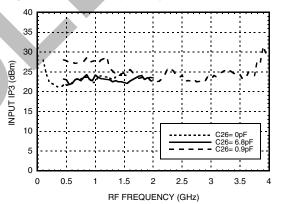
DC Test Conditions [1]

Parameter	Condition
Supply	200 mA @ +5V
VccLO [2]	124 mA @ +2.8V
QN, QP, IN, IP [2]	76 mA @ +3.5V

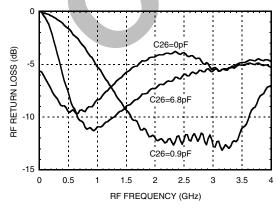
[1] Unless otherwise specified, the following test conditions were used. Please refer to the HMC597LP4(E) application schematic.

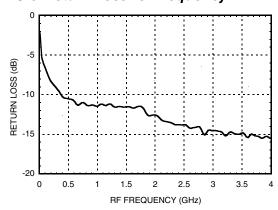

[2] Voltages at these pins are supplied through bias resistors from Vsupply, 5V (see application circuit). Power dissipation on chip is $124 \times 2.8 + 76 \times 3.5 = 613.2$ mW.

Thermal rise calculations should be based on this power dissipation level.


AC Test Conditions [1]

Parameter	Condition
RF Input Frequency	1970 MHz
RF Input Frequency for IIP3	1970 & 1971 MHz
RF Input Power for IIP3	0 dBm per Tone
LO Frequency	1960 MHz
LO Input Power	0 dBm single ended through LOP

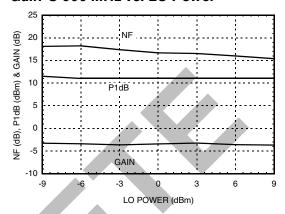

P1dB, Noise Figure, Gain vs. Frequency [1]


Input IP3 vs. Frequency [1]

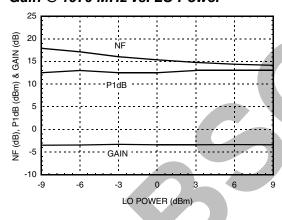
RF Return Loss vs. Frequency

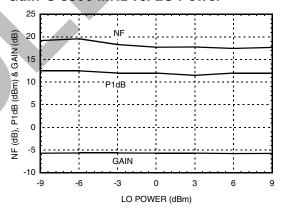
LO & Return Loss vs. Frequency

[1] IF Frequency= 10 MHz



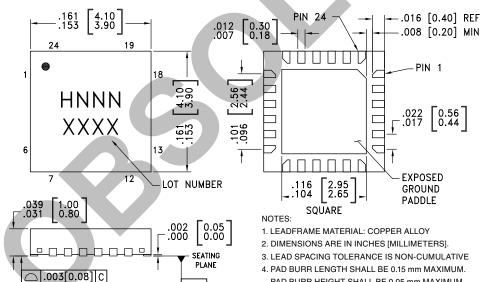
SiGe WIDEBAND DIRECT DEMODULATOR RFIC, 100 - 4000 MHz


LO - RF Isolation vs. Frequency


Noise Figure, P1dB, Gain @ 900 MHz vs. LO Power [1]

Noise Figure, P1dB, Gain @ 1970 MHz vs. LO Power [1]

Noise Figure, P1dB, Gain @ 3500 MHz vs. LO Power [1]


SiGe WIDEBAND DIRECT **DEMODULATOR RFIC, 100 - 4000 MHz**

Absolute Maximum Ratings

Vcc1, Vcc2	+6V
LO Input Power	+12 dBm
Channel Temperature	150 °C
Thermal Resistance (R _{th}) (channel to ground paddle)	8.9 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1B

Outline Drawing

-c-

BOTTOM VIEW

- 4. PAD BURR LENGTH SHALL BE 0.15 mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05 mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC597LP4	Low Stress Injection Molded Plastic	Sn / Pb Solder	MSL1 [1]	H597 XXXX
HMC597LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H597</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

SiGe WIDEBAND DIRECT DEMODULATOR RFIC, 100 - 4000 MHz

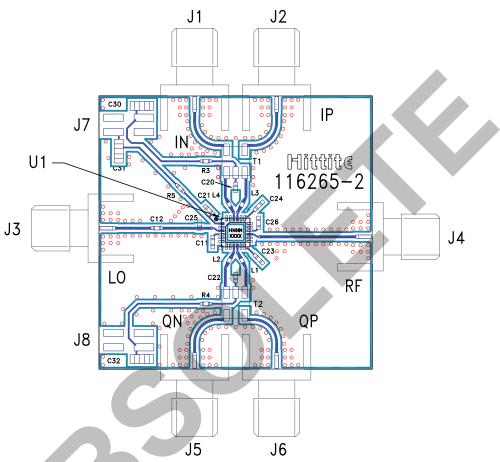
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	VccLO	Supply for LO Amplifier. Typically draws 124mA @ 2.8V.	LO DRIVE
2, 5, 8, 11, 12, 14, 17, 19, 20, 23	GND	These pins and the ground paddle should be connected to a high quality RF/DC ground.	O GND
3	LOP	LO input. Need a DC decoupling capacitor. Typically at 1.5 - 1.8 VDC.	VccLO O
4	LON	This pin should be AC grounded. Also can be used to optimize the IP2 performances	
6, 7, 24	N/C	Not Connected	
9, 10 21, 22	QN, QP IP, IN	Differential baseband outputs. 400 Ohms differential output impedance. Each port should draw 38 mA @ 3.5V.	IN QN IP IQ
12, 19	VccQ, Vccl	Decoupling for the Q and I mixer stages.	VCCI VCCQ I MIXER Q MIXER
13, 18	CTRFQ, CTRFI	Center tap of the RF transformer. Should be connected to a high quality RF/DC ground.	CTRFQ

SiGe WIDEBAND DIRECT DEMODULATOR RFIC, 100 - 4000 MHz

Pin Descriptions (Continued)

Pin Number	Function	Description	Interface Schematic
15	RFN	RF Input.	RFP
16	RFP	Can be DC or RF grounded. This pin is used to match the RF port over the desired frequency range. Also can be used to drive the RF port differentially if needed.	RFN



SiGe WIDEBAND DIRECT DEMODULATOR RFIC, 100 - 4000 MHz

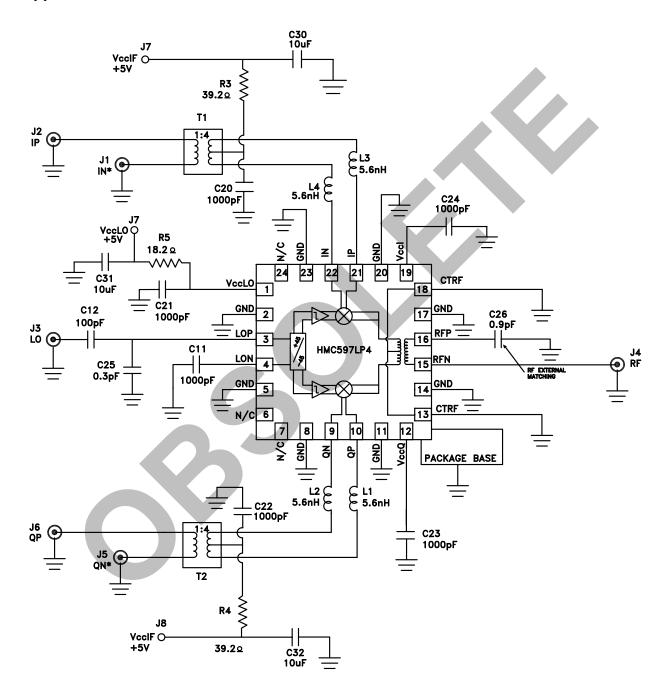
Evaluation PCB

Evaluation PCB 115775 [1][2]

Item	Description
J1 - J6	PCB Mount SMA Connector
J7, J8	2 mm DC Header
C11, C20 - C24	1000 pF Capacitor, 0402 Pkg.
C12	100 pF Capacitor, 0402 Pkg.
C25	0.3 pF Capacitor, 0402 Pkg.
C26	0.9 pF Capacitor, 0402 Pkg.
C30 - C32	0.1 μF Capacitor, 0805 Pkg.
R3, R4	39.2 Ohm Resistor, 0402 Pkg.
R5	18.2 Ohm Resistor, 0402 Pkg.
L1 - L4	5.6 nH Inductor, 0402 Pkg.
T1, T2	2 - 800 MHz Balun
U1	HMC597LP3 / HMC597LP3E Direct Demodulator
PCB [2]	116265 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350


The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

SiGe WIDEBAND DIRECT DEMODULATOR RFIC, 100 - 4000 MHz

Application & Evaluation PCB Schematic

^{*} Short to ground for single ended mode.