

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

v02.0311

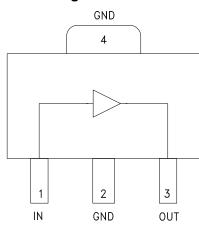
GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz

Typical Applications

The HMC599ST89(E) is ideal for:

- VHF / UHF Antennas
- HDTV Receivers
- CMTS Equipment
- CATV, Cable Modem & DBS

Features


High P1dB Output Power: +19 dBm

High Output IP3: +39 dBm Low Noise Figure: 2.2 dB

Cascadable 75 Ohm I/Os

Single Bias Supply: +3V or +5V Industry Standard SOT89 Package

Functional Diagram

General Description

The HMC599ST89(E) is a GaAs PHEMT High Linearity, Low Noise Gain Block MMIC SMT amplifier covering 50 to 1000 MHz. Packaged in an industry standard SOT89, the amplifier can be used as a cascadable 75 Ohm RF or IF gain stage as well as a PA or LO driver with up to +19 dBm output power. The HMC599ST89(E) offers 14 dB of gain with a +39 dBm output IP3 at 250 MHz, and can operate directly from a +3V or +5V supply. The HMC599ST89(E) exhibits excellent gain and output power stability over temperature, while requiring a minimal number of external bias components.

Electrical Specifications, Vdd = 5V, $T_{A} = +25^{\circ}$ C

Parameter		Min.	Тур.	Max.	Units
Gain	50 - 500 MHz 500 - 1000 MHz	13 12	14.5 14		dB dB
Gain Variation Over Temperature	50 - 1000 MHz		0.005		dB/ °C
Input Return Loss	50 - 500 MHz 500 - 1000 MHz		15 12		dB dB
Output Return Loss	50 - 500 MHz 500 - 1000 MHz		25 15		dB dB
Reverse Isolation	50 - 1000 MHz		20		dB
Output Power for 1 dB Compression (P1dB)	50 - 500 MHz	16	19		dBm
Output Third Order Intercept (IP3) (Pout= -10 dBm per tone, 1 MHz spacing)	50 - 500 MHz 500 - 1000 MHz		39 36		dBm dBm
Noise Figure	50 - 1000 MHz		2.2		dB
Supply Current (Idd)		100	120	140	mA

HMC599* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

HMC599ST89 Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC599 Data Sheet

REFERENCE MATERIALS 🖳

Quality Documentation

- Package/Assembly Qualification Test Report: 3 Lead Plastic SOT89 Package (QTR: 10002 REV: 02)
- Semiconductor Qualification Test Report: PHEMT-G (QTR: 2013-00273)

DESIGN RESOURCES

- HMC599 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC599 EngineerZone Discussions.

SAMPLE AND BUY 🖳

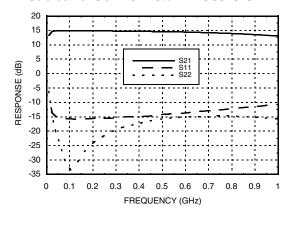
Visit the product page to see pricing options.

TECHNICAL SUPPORT

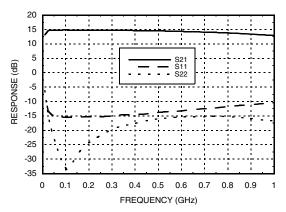
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

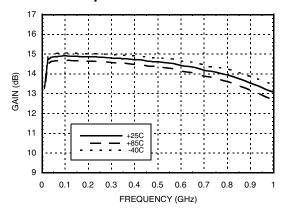
Submit feedback for this data sheet.

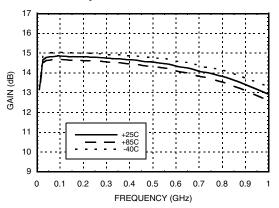


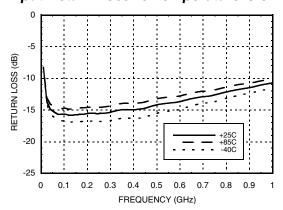
v02.0311

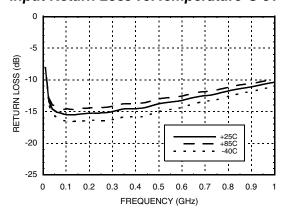


GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz


Broadband Gain & Return Loss @ 3V

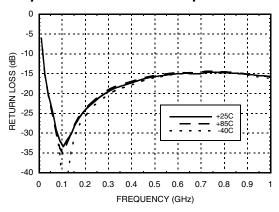

Broadband Gain & Return Loss @ 5V


Gain vs. Temperature @ 3V

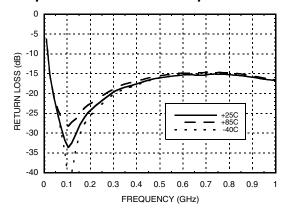

Gain vs. Temperature @ 5V

Input Return Loss vs. Temperature @ 3V

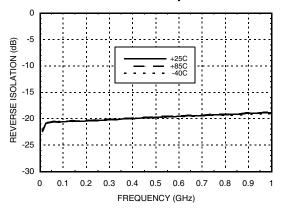
Input Return Loss vs. Temperature @ 5V

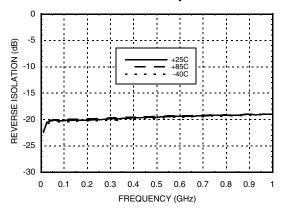


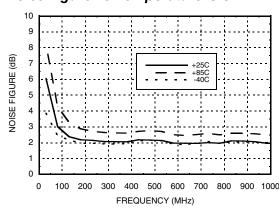
v02.0311

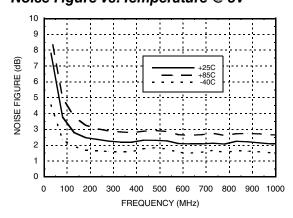


GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz


Output Return Loss vs. Temperature @ 3V


Output Return Loss vs. Temperature @ 5V


Reverse Isolation vs. Temperature @ 3V

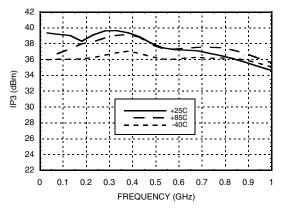

Reverse Isolation vs. Temperature @ 5V

Noise Figure vs. Temperature @ 3V

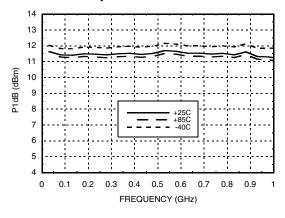
Noise Figure vs. Temperature @ 5V

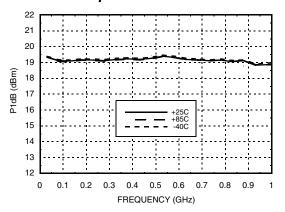


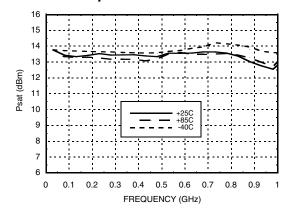
v02.0311

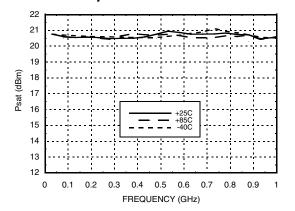


GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz

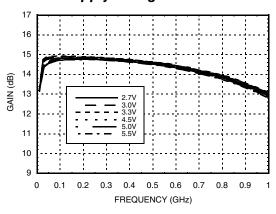

IP3 vs. Temperature @ 3V


IP3 vs. Temperature @ 5V

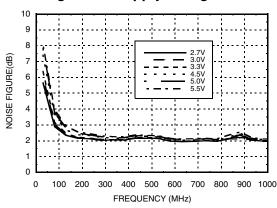

P1dB vs. Temperature @ 3V

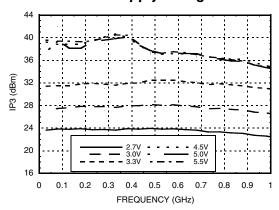

P1dB vs. Temperature @ 5V

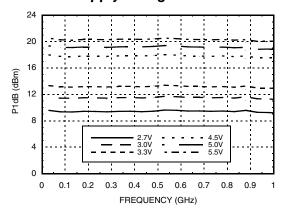
Psat vs. Temperature @ 3V

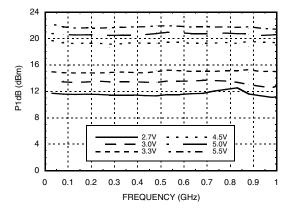


Psat vs. Temperature @ 5V




Gain vs. Supply Voltage


Noise Figure vs. Supply Voltage


IP3 vs. Supply Voltage

P1dB vs. Supply Voltage

Psat vs. Supply Voltage

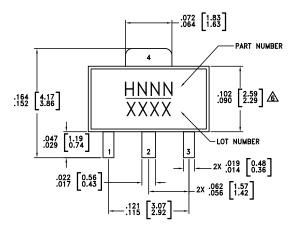
7 - 5

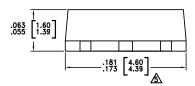
v02.0311

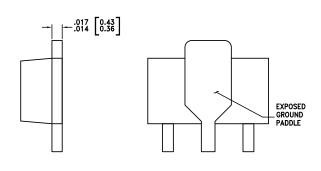
GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+6 Vdc	
RF Input Power (RFIN)	+10 dBm	
Channel Temperature	175 °C	
Continuous Pdiss (T = 85 °C) (derate 9.84 mW/°C above 85 °C)	0.89 W	
Thermal Resistance (junction to ground paddle)	101.67 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	


Typical Supply Current vs. Vdd


Vdd (Vdc)	ldd (mA)		
+5	120		
+3	120		



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL:
- MOLDING COMPOUND MP-180S OR EQUIVALENT.
- 2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.
- 3. LEAD PLATING: 100% MATTE TIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15 mm PER SIDE.
- △DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25 mm PER SIDE.

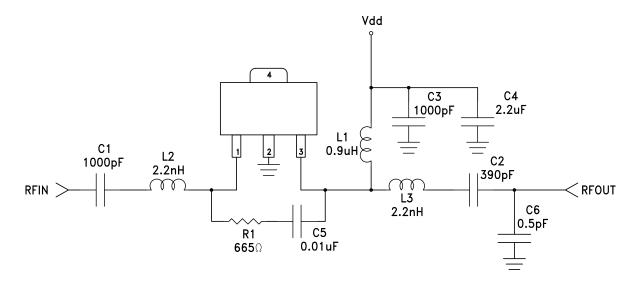
 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC599ST89	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H599 XXXX
HMC599ST89E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H599 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

v02.0311



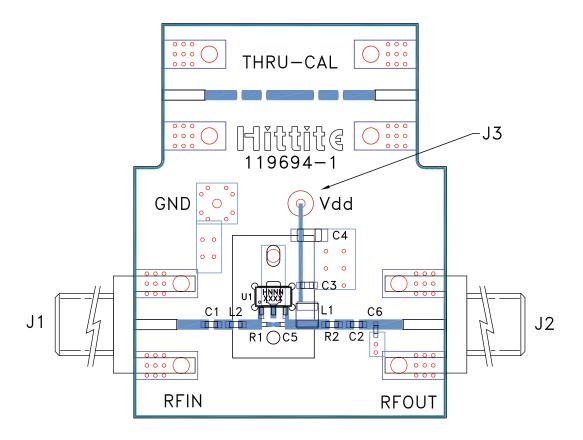
GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1	IN	This pin is DC coupled. See the application circuit for off-chip components	IN OUT	
3	ОИТ	RF output and DC Bias (Vdd) for the output stage.	= '	
2, 4	GND	These pins and package bottom must be connected to RF/DC ground.	GND =	

Application Circuit

ANALOGDEVICES


HMC599ST89 / 599ST89E

v02.0311

GaAs pHEMT MMIC LNA, 75 Ohm 50 - 1000 MHz

Evaluation PCB

List of Materials for Evaluation PCB 119696 [1]

Item	Description	
J1 - J2	PCB Mount 75 Ohm Connector	
J3	DC Pin	
C1, C3	1000 pF Capacitor, 0603 Pkg.	
C2	390 pF Capacitor, 0603 Pkg.	
C4	2.2 μF Capacitor, Tantalum	
C5	10 KpF Capacitor, 0402 Pkg.	
C6	0.5 pF Capacitor, 0402 Pkg.	
L1	0.9 μH Inductor, 1008 Pkg.	
L2, L3	2.2 nH Inductor, 0603 Pkg.	
R1	665 Ohm Resistor, 0402 Pkg.	
U1	HMC599ST89 / HMC599ST89E	
PCB [2]	119694 Evaluation PCB	

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[1] Reference this number when ordering complete evaluation PCB $\,$

^[2] Circuit Board Material: Rogers 4350

^[3] Evaluation board tuned for 900 MHz operation