

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

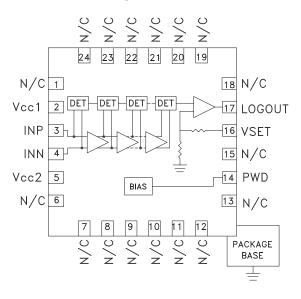
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC600LP4 / 600LP4E

v02.0909


75 dB LOGARITHMIC DETECTOR / CONTROLLER 50 - 4000 MHz

Typical Applications

The HMC600LP4 / HMC600LP4E is ideal for IF and RF applications in:

- Cellular/PCS/3G
- WiMAX, WiBro & Fixed Wireless
- Power Monitoring & Control Circuitry
- Receiver Signal Strength Indication (RSSI)
- Automatic Gain & Power Control

Functional Diagram

Features

Wide Dynamic Range: up to 75 dB Flexible Supply Voltage: +2.7V to +5.5V

Power-Down Mode

Excellent Stability over Temperature

Compact 4x4mm Leadless SMT Package

General Description

The HMC600LP4(E) Logarithmic Detector/Controller converts RF signals at its input, to a proportional DC voltage at its output. The HMC600LP4(E) employs a successive compression topology which delivers extremely high dynamic range and conversion accuracy over a wide input frequency range. As the input power is increased, successive amplifiers move into saturation one by one creating an accurate approximation of the logarithm function. The output of a series of square law detectors is summed, converted into voltage domain and buffered to drive the LOGOUT output. For detection mode, the LOGOUT pin is shorted to the VSET input, and will provide a nominal logarithmic slope of 19mV/dB and an intercept of -95 dBm. The HMC600LP4(E) can also be used in the controller mode where an external voltage is applied to the VSET pin, to create an AGC or APC feedback loop.

Electrical Specifications, $T_A = +25C$, PWD = 0V, Vcc1, Vcc2 = +3.3V [1]

Parameter	Тур.	Тур.	Тур.	Тур.	Тур.	Тур.	Тур.	Тур.	Units
Input Frequency	50	100	500	900	1900	2500	3500	4000	MHz
±3 dB Dynamic Range	74	74	74	74	70	66	51	48	dB
±3 dB Dynamic Range Center	-30	-30	-30	-30.5	-31.0	-31.0	-27	-23.5	dBm
±1 dB Dynamic Range	64	64	64	65	62	59	44	41	dB
Output Slope	19.6	19.5	19.4	19.2	19.1	19.5	21.0	22.3	mV/dB
Output Intercept	-96	-96	-96	-96	-95	-93	-79	-72	dBm
Temperature Sensitivity @ -10 dBm Input [2]	-2.7	-2.8	-3.6	-4.8	-6.9	-7.4	-8.3	-12.9	mdB/°C

[1] Detector mode measurements; LOGOUT (Pin 17) is shorted to VSET (Pin 16).

[2] Measured from $T_A = -40C$ to $T_A = +85C$

Parameter	Conditions	Min.	Тур.	Max.	Units
RF Input (INP)					
Return Loss	F = 50 - 4000 MHz, Zo = 50Ω, See plot		10		dB
LOGOUT Interface					
Open Loop Impedance			16		kΩ
Current Drive (Source)			0.4		mA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC600* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

· HMC600LP4 Evaluation Board

DOCUMENTATION

Data Sheet

· HMC600 Data Sheet

REFERENCE MATERIALS -

Quality Documentation

- Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
- Semiconductor Qualification Test Report: BiCMOS-A (QTR: 2013-00235)

DESIGN RESOURCES

- HMC600 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS •

View all HMC600 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

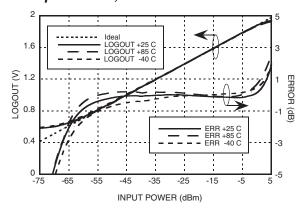
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

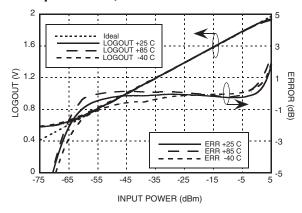
Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

75 dB LOGARITHMIC DETECTOR / CONTROLLER 50 - 4000 MHz


Electrical Specifications, (continued)

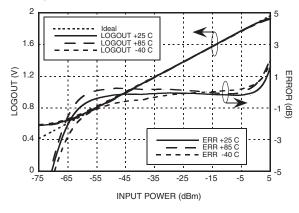
Parameter	Conditions	Min.	Тур.	Max.	Units
Current Drive (Sink)	For 1% change in the output voltage		2.25		mA
Output Voltage Range		0		Vcc -0.13	V
Small Signal Response Time (10% to 90%)	Pin = -60 to -57 dBm		50		ns
Large Signal Response Time (±0.5 dB Settling)	Pin = No Signal to 0 dBm		150		ns
Output Rise Time	From 0% to 90%		90		ns
Ripple	Fin = 100 MHz		<2		mVpp
VSET Interface					
Input Impedance			30		kΩ
Input Voltage Range			0.6 to 1.9		V
Low Frequency Gain	VSET to LOGOUT		78		dB
Open Loop Corner Frequency			1.6		kHz
Power Down (PWD) Interface					
Voltage Range for Normal Mode		0		0.2 x Vcc	V
Voltage Range for Shutdown Mode		0.8 x Vcc		Vcc	V
Threshold Voltage			Vcc/2		V
Power-up Response Time	50% PWD to ±0.5 dB Settling of LOGOUT		1		μs
Power-Down Response Time	50% PWD to 10% Icc		2.5		μs
Power Supply (Vcc1, Vcc2)		·			
Operating Voltage Range		2.7		5.5	V
Supply Current in Normal Mode	Vcc = +3.3V, PWD = 0V		29	36	mA
Supply Current in Power Down Mode	Vcc = +3.3V, PWD = Vcc		1		mA


Test Conditions

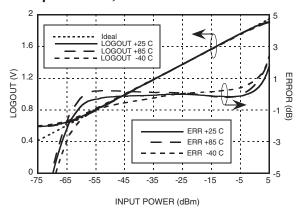
Parameter	Condition	
Vcc1, Vcc2	+3.3V	
Input Zo	50Ω	
T _A	+25C	
Fin	900 MHz	
INN Port connected to ground through a 1000pF capacitor		

LOGOUT Voltage & Error vs. Input Power, Fin = 50 MHz

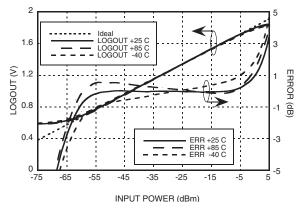
LOGOUT Voltage & Error vs. Input Power, Fin = 100 MHz

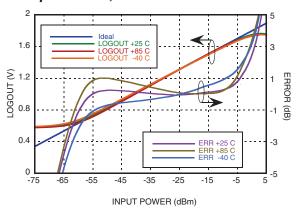


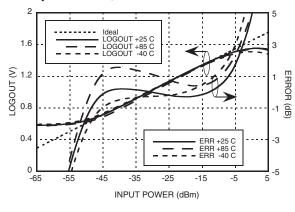
Unless otherwise noted: Vcc1, Vcc2 = +3.3V, TA = +25C

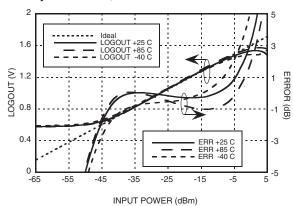


75 dB LOGARITHMIC DETECTOR / CONTROLLER 50 - 4000 MHz


LOGOUT Voltage & Error vs. Input Power, Fin = 500 MHz

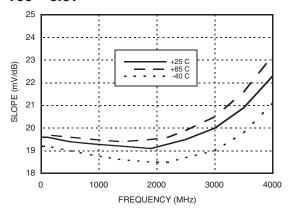

LOGOUT Voltage & Error vs. Input Power, Fin = 900 MHz

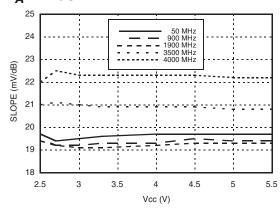

LOGOUT Voltage & Error vs. Input Power, Fin = 1900 MHz


LOGOUT Voltage & Error vs. Input Power, Fin = 2500 MHz

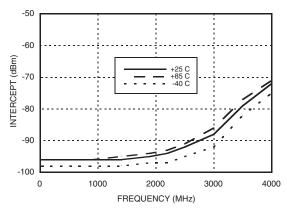
LOGOUT Voltage & Error vs. Input Power, Fin = 3500 MHz

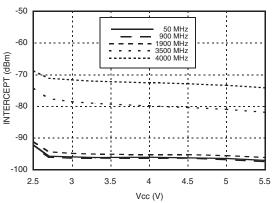
LOGOUT Voltage & Error vs. Input Power, Fin = 4000 MHz

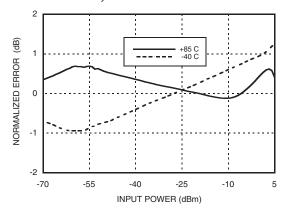

Unless otherwise noted: Vcc1, Vcc2 = +3.3V, T_A = +25C

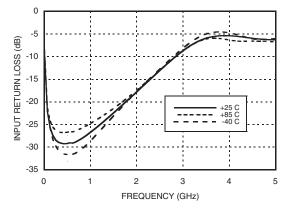


75 dB LOGARITHMIC DETECTOR / CONTROLLER 50 - 4000 MHz


LOGOUT Slope vs. Frequency, Vcc = 3.3V

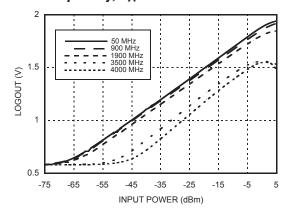

LOGOUT Slope vs. Supply Voltage, $T_A = +25C$


LOGOUT Intercept vs. Frequency, Vcc = +3.3V


LOGOUT Intercept vs. Bias Voltage $T_A = +25C$

LOGOUT Error vs. Input Power, Normalized^[2], Fin = 1900 MHz

Input Return Loss

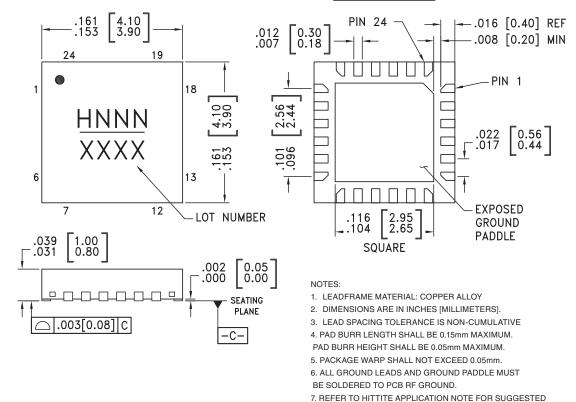

- [1] Unless otherwise noted: Vcc1, Vcc2 = +3.3V, $T_A = +25C$
- [2] This data is relative to the room temperature performance of the $\ensuremath{\mathsf{HMC600LP4}}$

75 dB LOGARITHMIC DETECTOR / CONTROLLER 50 - 4000 MHz

LOGOUT Voltage vs. Input Power and Frequency, $T_A = +25C$

Absolute Maximum Ratings

Vcc1, Vcc2	0V to +5.5V
PWD	0V to +5.5V
VSET Input Voltage	0V to +5.5V
LOGOUT Output Current	3 mA
RF Input Power	+12 dBm
Junction Temperature	125 °C
Continuous Pdiss (T = 85°C) (Derate 7.95 mW/°C above 85°C)	0.32 Watts
Thermal Resistance (R _{th}) (junction to lead)	126 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1C



PCB LAND PATTERN.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

BOTTOM VIEW

Unless otherwise noted: Vcc1, Vcc2 = +3.3V, $T_A = +25C$

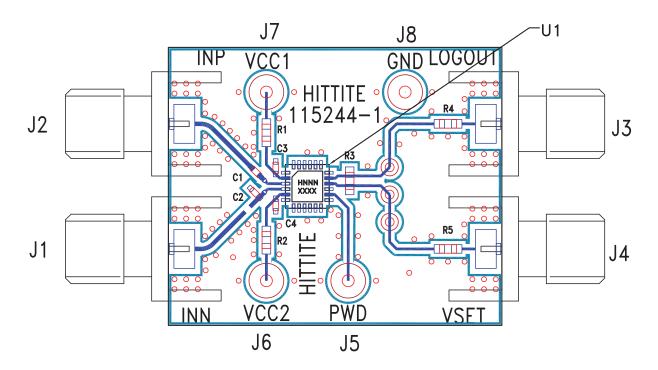
75 dB LOGARITHMIC DETECTOR / CONTROLLER 50 - 4000 MHz

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC600LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H600 XXXX
HMC600LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H600 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 6, 7-13, 15, 18-24	N/C	These pins are not connected internally; however, this product is specified with these pins connected to RF/DC ground.	
2, 6	Vcc1, Vcc2	Bias supply. Connect supply voltage to both pins.	Vcc1, o
3, 4	INP, INN	RF Input pins. Connect RF to INP, and AC couple INN to ground for single-ended operation.	INP 0 50Ω
14	PWD	Connect to 0V for normal operation. Applying voltage >0.8 x Vcc will initiate a power saving shutdown mode. To ensure proper start-up apply the power-up sequence shown in the "Power-Up Timing Diagram" attached to the application circuit.	PWD 0
16	VSET	VSET input in controller mode. Short this pin to LOGOUT for detector mode.	LOGOUT
17	LOGOUT	Logarithmic output that converts the input power to a DC level in detector mode. Short this pin to VSET for detector mode.	15ΚΩ VSET \$15ΚΩ
Package Base	GND	Exposed paddle must be connected to RF and DC ground.	○GND =

75 dB LOGARITHMIC DETECTOR / CONTROLLER 50 - 4000 MHz

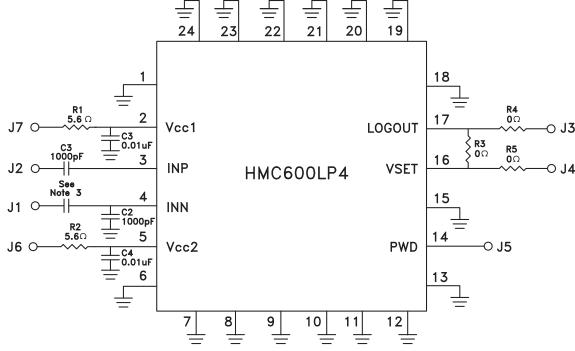
Evaluation PCB

List of Materials for Evaluation PCB 115242 [1]

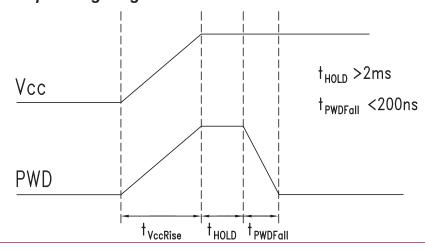
Item	Description
J1 - J4	PC Mount SMA Connector
J5 - J8	DC Pin
C1, C2	1000 pF Capacitor, 0402 Pkg.
C3, C4	0.1µF Capacitor, 0402 Pkg.
R1, R2	5.6Ω Resistor, 0603 Pkg.
R3-R5	0Ω Resistor, 0603 Pkg.
U1	HMC600LP4 / HMC600LP4E Logarithmic Detector / Controller
PCB [2]	115244 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350


The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

75 dB LOGARITHMIC DETECTOR / CONTROLLER 50 - 4000 MHz


Application & Evaluation PCB Schematic

Notes

- $Note \ 1: The \ HMC600LP4 \ \& \ HMC600LP4E \ evaluation \ boards \ are \ pre-assembled \ for \ single-ended \ input, \ and \ detector/RSSI \ mode.$
- Note 2: For single-ended input operation, use the INP port and make no connection to INN. INN is AC coupled to ground by C2
- Note 3: For differential input, remove C2, and install a 1000pF capacitor in series with INN at location shown.
- Note 4: For detector mode, connect high impedence volt meter to the LOGOUT port, and make no connection to VSET. LOGOUT is shorted to VSET by R3, as required for detector mode.
- Note 5: For controller mode, remove R3 and make appropriate connection to LOGOUT and VSET. In controller mode, the LOGOUT output can be used to drive a variable gain amplifier, or a variable attenuator, either directly or through a buffer or microcontroller. VSET should be connected to an external supply, typically between +0.6 and +1.9V.

Power-Up Timing Diagram

