imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ANALOG GaAs, InGaP, HBT, MMIC, Ultralow Phase Noise, **Distributed Amplifier, 2 GHz to 18 GHz**

Data Sheet

HMC606LC5

24 NC

23 NC

22 GND

20 GND

19 NC

18 NC

17 NC

PACKAGE BASE

GND

1968-001

21 RFOUT

FEATURES

Ultralow phase noise: -160 dBc/Hz typical at 10 kHz Output power for 1 dB compression (P1dB): 15 dBm typical at 2 GHz to 12 GHz frequency range Gain: 13.5 dB typical at 2 GHz to 12 GHz frequency range Output third-order intercept (IP3): 27 dBm typical at 2 GHz to 12 GHz frequency range Supply voltage: 5.0 V at 64 mA typical 50 Ω matched input/output 32-terminal, ceramic, leadless chip carrier (LCC)

APPLICATIONS

Radars, electronic warfare (EW), and electronic counter measures (ECMs) **Microwave radios Test instrumentation Military and space Fiber optic systems**

GENERAL DESCRIPTION

The HMC606LC5 is a gallium arsenide (GaAs), indium gallium phosphide (InGaP), heterojunction bipolar transistor (HBT), monolithic microwave integrated circuit (MMIC) distributed amplifier housed in a 32-terminal, ceramic, leadless chip carrier (LCC) package that operates from 2 GHz to 18 GHz. With an input signal of 12 GHz, the amplifier provides ultralow phase noise performance of -160 dBc/Hz at a 10 kHz offset, representing a

significant improvement over field effect transistor (FET)-based distributed amplifiers. The HMC606LC5 provides 13.5 dB of small signal gain, 27 dBm output IP3, and 15 dBm of output power for 1 dB compression while requiring 64 mA from a 5.0 V supply. The input and output of the HMC606LC5 amplifier are internally matched to 50 Ω and are internally dc blocked.

FUNCTIONAL BLOCK DIAGRAM

HMC606LC5

Figure 1.

Ο

NC

V_{CC}1 2 NC 3

4

5

6 NC 7

GND

RFIN

GND

NC 8

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC606LC5* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

HMC606LC5 Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

• HMC606LC5: GaAs, InGaP, HBT, MMIC, Ultralow Phase Noise, Distributed Amplifier, 2 GHz to 18 GHz Data Sheet

TOOLS AND SIMULATIONS \square

HMC606LC5 S-Parameters

REFERENCE MATERIALS

Quality Documentation

- Package/Assembly Qualification Test Report: LC5, LC5A (QTR: 2014-00384 REV: 01)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES

- HMC606LC5 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC606LC5 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Electrical Specifications	3
Absolute Maximum Ratings	4
ESD Caution	4

REVISION HISTORY

This Hittite Microwave Products data sheet has been reformatted to meet the styles and standards of Analog Devices, Inc.

2/2017—Rev. 05.0514 to Rev. F

Updated FormatUniv	versal
Changes to Features Section and General Description Section	on.1
Changes to Table 4	4
Updated Outline Dimensions	9
Changes to Ordering Guide	9

SPECIFICATIONS ELECTRICAL SPECIFICATIONS

 $T_{\rm A}$ = 25°C, $V_{\rm CC}1$ = $V_{\rm CC}2$ = 5 V, unless otherwise noted.

Table	1.
-------	----

Parameter	Min	Тур	Max	Unit
FREQUENCY RANGE	2		12	GHz
GAIN	10.5	13.5		dB
Flatness		±1.0		dB
Variation Over Temperature		0.021		dB/°C
NOISE FIGURE		5		dB
INPUT RETURN LOSS		20		dB
OUTPUT				
Return Loss		15		dB
Power for 1 dB Compression (P1dB)	12	15		dBm
Saturated Power (P _{SAT})		17		dBm
Third-Order Intercept (IP3)		27		dBm
PHASE NOISE				
At 100 Hz		-140		dBc/Hz
At 1 kHz		-150		dBc/Hz
At 10 kHz		-160		dBc/Hz
At 1 MHz		-170		dBc/Hz
SUPPLY CURRENT		64	95	mA

Table 2.

Parameter	Min	Тур	Мах	Unit
FREQUENCY RANGE	2		18	GHz
GAIN	9.5	12.5		dB
Flatness		±1.0		dB
Variation Over Temperature		0.024		dB/°C
NOISE FIGURE		7		dB
INPUT RETURN LOSS		18		dB
OUTPUT				
Return Loss		15		dB
Power for 1 dB Compression (P1dB)	10	13		dBm
Saturated Power (P _{SAT})		15		dBm
Third-Order Intercept (IP3)		22		dBm
PHASE NOISE				
At 100 Hz		-140		dBc/Hz
At 1 kHz		-150		dBc/Hz
At 10 kHz		-160		dBc/Hz
At 1 MHz		-170		dBc/Hz
SUPPLY CURRENT		64	95	mA

Table 3. V_{CC}1, V_{CC}2 vs. Typical Supply Current

Vcc1, Vcc2 (V)	lcc1 + lcc2 (mA)
4.5	53
5.0	64
5.5	71

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
$V_{CC}1 = V_{CC}2$	7 V
RF Input Power (RFIN)	15 dBm
Channel Temperature	175°C
Continuous Power Dissipation, P _{DISS} (T _A = 85°C, Derate 6 mW/°C Above 85°C)	0.55 W
Maximum Peak Reflow Temperature (MSL3) ¹	260°C
Thermal Resistance (Channel to Ground Paddle)	92°C/W
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	-40°C to +85°C
ESD Sensitivity (Human Body Model, HBM)	Class 0, Pass 100 V

¹ See the Ordering Guide section.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 3, 7 to 15, 17 to 19, 23 to 32	NC	No Connect. These pins may be connected to RF ground. Performance will not be affected.
2, 16	Vcc1, Vcc2	Power Supply Voltages for the Amplifier. See Figure 3 for the interface schematic.
4, 6, 20, 22	GND	Ground. These pins must be connected to RF/dc ground. See Figure 4 for the interface schematic.
5	RFIN	RF Input. This pin is ac-coupled and matched to 50 Ω . See Figure 5 for the interface schematic.
21	RFOUT	RF Output. This pin is ac-coupled and matched to 50 $\Omega.$ See Figure 6 for the interface schematic.
	EPAD	Exposed Pad. The exposed pad must be connected to RF/dc ground.

INTERFACE SCHEMATICS

GND GND GND Figure 4. GND Interface Schematic

400 4968 RFIN O-

Figure 5. RFIN Interface Schematic

005

Figure 6. RFOUT Interface Schematic

HMC606LC5

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Response (Gain and Return Loss) vs. Frequency

Figure 8. Input Return Loss vs. Frequency for Various Temperatures

Figure 9. Output Power (P_{OUT}), Gain, and Power Added Efficiency (PAE) vs. Input Power (P_{IN})

Figure 10. Gain vs. Frequency for Various Temperatures

Figure 11. Output Return Loss vs. Frequency for Various Temperatures

Figure 12. Noise Figure vs. Frequency for Various Temperatures

Data Sheet

20 +85°C +25°C –40°C 16 P1dB (dBm) 12 8 4 0 4968-012 10 12 14 16 2 4 6 8 18 FREQUENCY (GHz)

Figure 13. Power for 1 dB Compression (P1dB) vs. Frequency for Various Temperatures

Figure 14. Output Third-Order Intercept (IP3) vs. Frequency for Various Temperatures

Figure 16. Saturated Power (PSAT) vs. Frequency for Various Temperatures

APPLICATIONS INFORMATION EVALUATION PRINTED CIRCUIT BOARD (PCB)

The circuit board used in the application must use RF circuit design techniques. Signal lines must have 50 Ω impedance, and the package ground leads and package bottom must be connected directly to the ground plane similar to that shown in Figure 19.

Use a sufficient number of via holes to connect the top and bottom ground planes. Mount the evaluation PCB to an appropriate heat sink. The evaluation PCB shown in Figure 19 is available from Analog Devices, Inc., upon request.

 Table 6. List of Materials for Evaluation PCB (117156-HMC606LC5¹)

ltem	Description
J1, J2	SRI K connectors
J3, J4	2 mm Molex headers
C1, C2	4.7 μF, tantalum capacitors
C3, C4	100 pF capacitors, 0402 package
C5, C6	1000 pF capacitors, 0603 package
U1	HMC606LC5
РСВ	117325-1 evaluation PCB; circuit board material: Rogers 4350

¹ Reference this number when ordering the complete evaluation PCB.

OUTLINE DIMENSIONS

Figure 20. 32-Terminal Ceramic Leadless Chip Carrier [LCC] (E-32-1) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	MSL Rating ²	Package Description	Package Option	Branding ³
HMC606LC5	-40°C to +85°C	MSL3	32-Terminal Ceramic Leadless Chip Carrier [LCC]	E-32-1	H606 XXXX
HMC606LC5TR	–40°C to +85°C	MSL3	32-Terminal Ceramic Leadless Chip Carrier [LCC]	E-32-1	H606 XXXX
HMC606LC5TR-R5	–40°C to +85°C	MSL3	32-Terminal Ceramic Leadless Chip Carrier [LCC]	E-32-1	H606 XXXX
117156-HMC606LC5			Evaluation Board		

¹ The HMC606LC5, HMC606LC5TR, and HMC606LC5TR-R5 are RoHS Compliant Parts.

² See the Absolute Maximum Ratings section.

³ The HMC606LC5, HMC606LC5TR, and HMC606LC5TR-R5 have a four digit lot number XXXX.

©2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D14968-0-2/17(F)

