

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

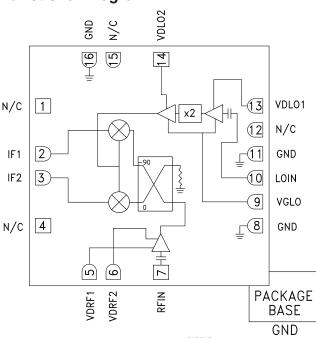
GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz

Typical Applications

The HMC6147ALC5A is ideal for:

- Point-to-Point and Point-to-Multi-Point Radio
- · Military Radar, EW & ELINT
- Satellite Communications
- Sensors

Features


Conversion Gain: 13 dB

Excellent Image Rejection: 25 dB

Output IP3: +12 dBm

16 Lead 5x5 mm SMT Ceramic Package: 25 mm²

Functional Diagram

General Description

The HMC6147ALC5A is a compact GaAs MMIC I/Q downconverter in a leadless RoHS compliant SMT package. This device provides a small signal conversion gain of 13 dB with 25 dBc of sideband rejection. The HMC6147ALC5A utilizes a low noise amplifier to drive the I/Q mixer where the LO is driven by a X2 multiplier. IF1 and IF2 mixer inputs are provided and an external 90° hybrid is needed to select the required sideband. The I/Q mixer topology reduces the need for filtering of the unwanted sideband. The HMC6147ALC5A is a much smaller alternative to hybrid style single sideband converter assemblies and it eliminates the need for wire bonding by allowing the use of surface mount manufacturing techniques.

Electrical Specifications ^{[1][2]}, $T_A = +25^{\circ}\text{C}$, IF = 1000 MHz, LO = +3 dBm, VDLO1,2 = +3V, IDLO1,2 = 150 mA, VDRF1,2 = +3V, IDRF1,2 = 75 mA, USB ^{[1][2]}

Parameter	Min.	Тур.	Max.	Units
Frequency Range, RF		37 - 44		GHz
Frequency Range, LO		16.5 - 22		GHz
Frequency Range, IF	0 - 4			GHz
Conversion Gain	10	13		dB
Image Rejection	15	25		dBc
1 dB Compression (Output)		1		dBm
IP3 (Input)		2		dBm
Noise Figure		3.5		dB
Supply Current IDLO1 + IDLO2 quiescent [2]		150		mA
Supply Current IDRF1 + IDRF2		75		mA

^[1] Unless otherwise noted all measurements performed with low side LO, IF = 1000 MHz and external IF 90° hybrid.

^[2] Adjust Vgg between -2 to 0V to achieve IDLO1 + IDLO2 = 150 mA Typical with RF turned off.

HMC6147A* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

· HMC6147ALC5A Evaluation Board

DOCUMENTATION

Data Sheet

• HMC6147A Data Sheet

REFERENCE MATERIALS -

Quality Documentation

 Package/Assembly Qualification Test Report: LC5, LC5A (QTR: 2014-00384 REV: 01)

Technical Articles

 The Changing Landscape of Frequency Mixing Components

DESIGN RESOURCES 🖵

- HMC6147A Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC6147A EngineerZone Discussions.

SAMPLE AND BUY 🖵

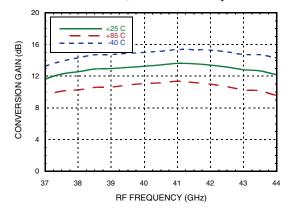
Visit the product page to see pricing options.

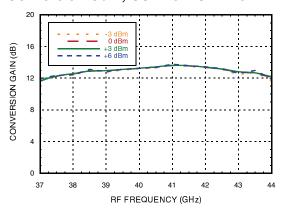
TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

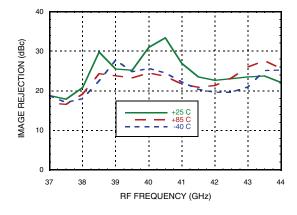
DOCUMENT FEEDBACK 🖳

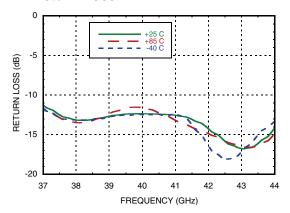
Submit feedback for this data sheet.

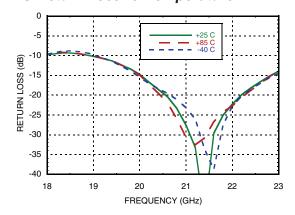


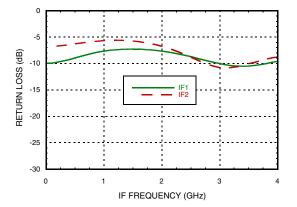

GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 1000 MHz


Conversion Gain, USB vs. Temperature


Conversion Gain, USB vs. LO Drive


Image Rejection vs. Temperature

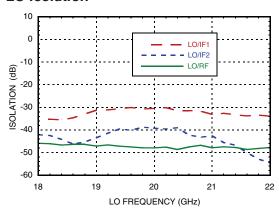

RF Return Loss

LO Return Loss vs. Temperature

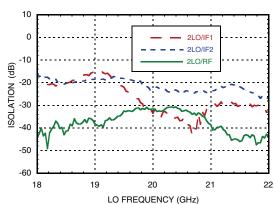
IF Return Loss [1]

[1] Data taken without external IF 90° hybrid

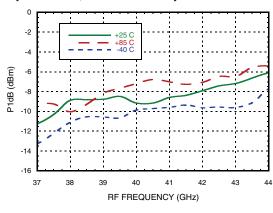
DEVICES

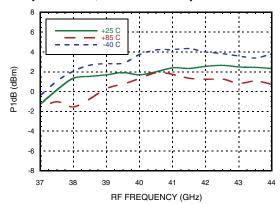


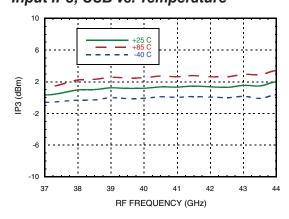
GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz

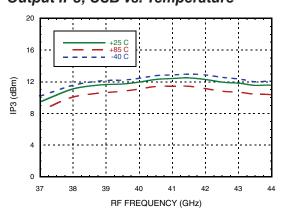

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 1000 MHz

v01.0514


LO Isolation

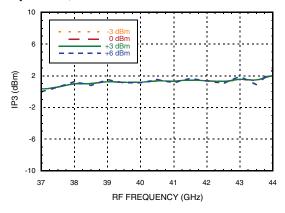

2LO Isolation

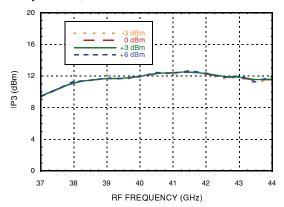

Input P1dB, USB vs. Temperature


Output P1dB, USB vs. Temperature

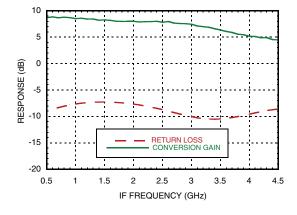
Input IP3, USB vs. Temperature

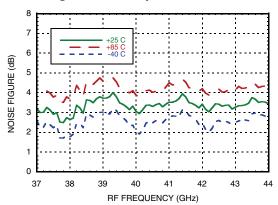
Output IP3, USB vs. Temperature

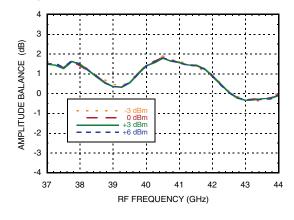


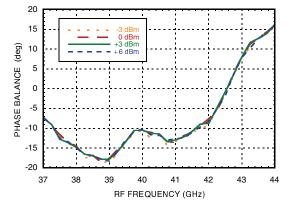

GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 1000 MHz


Input IP3, USB vs. LO Power


Output IP3, USB vs. LO Power

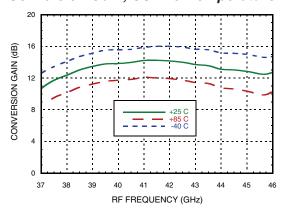

IF Bandwidth [1]

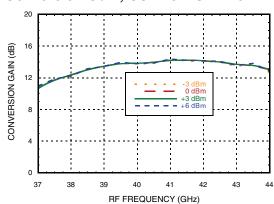

Noise Figure vs. Temperature

Amplitude Balance vs. LO Drive

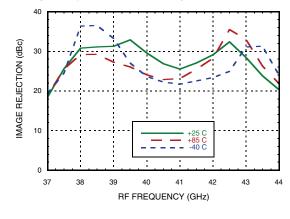
Phase Balance vs. LO Drive

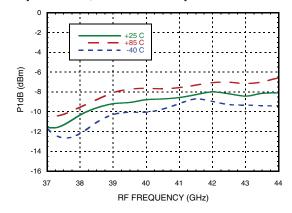
[1] LO = 18GHz

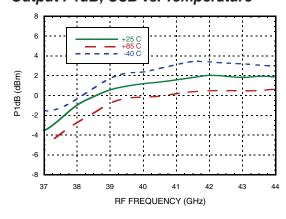


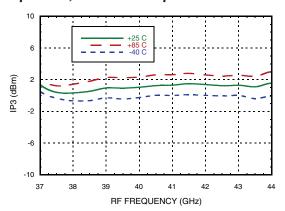

GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 2000 MHz


Conversion Gain, USB vs. Temperature

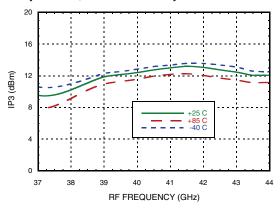

Conversion Gain, USB vs. LO Drive

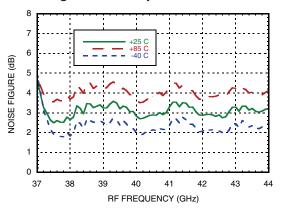

Image Rejection vs. Temperature


Input P1dB, USB vs. Temperature

Output P1dB, USB vs. Temperature

Input IP3, USB vs. Temperature




GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 2000 MHz

Output IP3, USB vs. Temperature

Noise Figure vs. Temperature

MxN Spurious Outputs [1][2]

	nLO				
mRF	0	1	2	3	4
0	xx	38	21		
1	17	48	0		
2	xx	xx	47		
3					
4					
5					

RF = 40 GHz @ -8 dBm LO = 19.5 GHz @ +4 dBm

MxN Spurious Outputs [1][2]

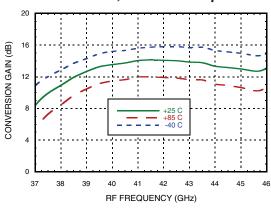
	nLO				
mRF	0	1	2	3	4
0	xx	42	16		
1	17	47	0		
2	xx	xx	43		
3					
4					
5				·	

RF = 40 GHz @ -8 dBm LO = 19.0 GHz @ +4 dBm

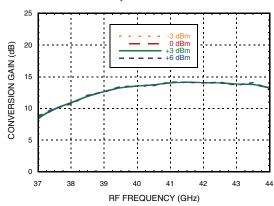
MxN Spurious Outputs [1][2]

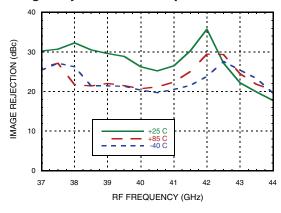
	nLO				
mRF	0	1	2	3	4
0	xx	44	20		
1	17	41	0		
2	xx	xx	50		
3					
4					
5					

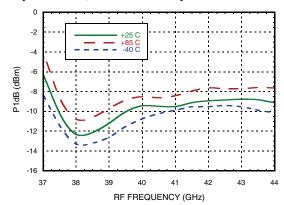
RF = 40 GHz @ -8 dBm LO = 18.5 GHz @ +4 dBm

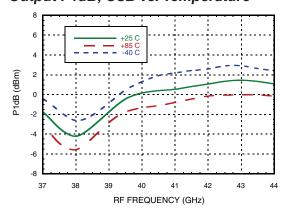

^[1] Data taken without external IF 90° hybrid

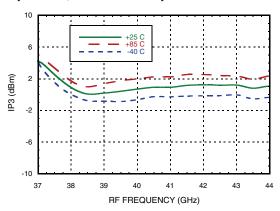
^[2] All values in dBc below RF power level (2LO + IF) USB


GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz


Conversion Gain, USB vs. Temperature

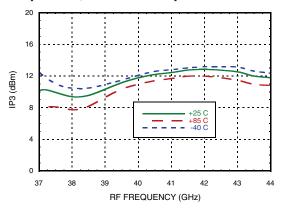

Conversion Gain, USB vs. LO Drive

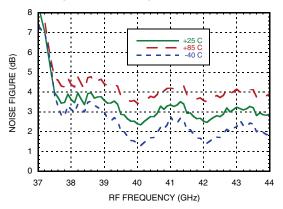

Image Rejection vs. Temperature


Input P1dB, USB vs. Temperature

Output P1dB, USB vs. Temperature

Input IP3, USB vs. Temperature

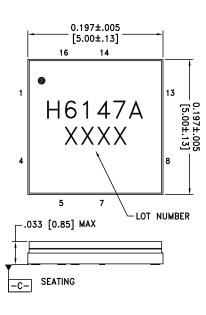


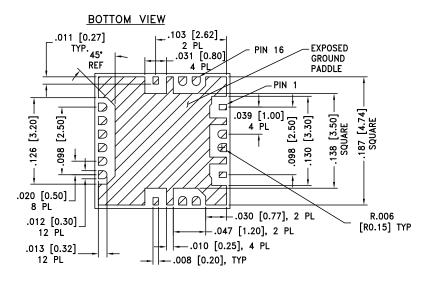

GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz

Data Taken as SSB Downconverter with External IF 90° Hybrid, IF = 3000 MHz

Output IP3, USB vs. Temperature

Noise Figure vs. Temperature


GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz


Absolute Maximum Ratings

RF Input	+8 dBm
LO Input	+10 dBm
Bias Voltage, VDLO and VDRF	+3.5V
Channel Temperature	175 °C
Continuous Pdiss (T = 85°C) (derate 17.8 mW/°C above 85°C)	1.6 W
Thermal Resistance (channel to ground paddle)	56 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class1A

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- LEAD AND GROUND PADDLE PLATING: 30 80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKLE
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED $0.05 \mathrm{mm}$ DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Package Information

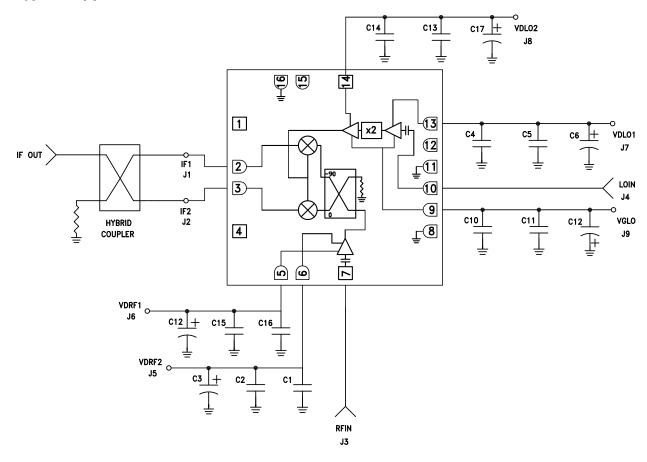
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC6147ALC5A	Alumina, White	Gold over Nickel	MSL3 ^[1]	6147A XXXX

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX

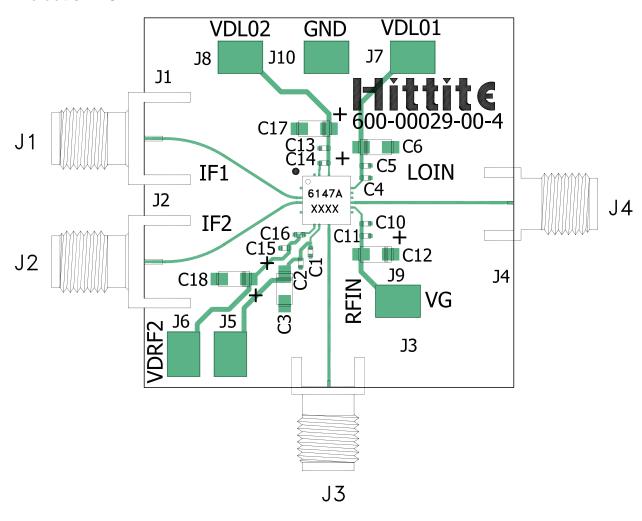
GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 4, 12,15	N/C	No connection required. The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
2	IF1	These pins are DC coupled. For applications not requiring operation to DC this port should be DC blocked externally using a series capacitor whose value has been chosen to	IF1,IF2
3	IF2	pass the necessary frequency range. For operation to DC, this pin must not sink / source more than 3 mA of current or part non-function and possible failure will result.	¥ \$
5	VDRF1	Pioc for LNA. The recommended DC veltors is QV	OVDRF1, VDRF2
6	VDRF2	Bias for LNA. The recommended DC voltage is 3V	
7	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN O—
8,11, 16	GND	These pins and expossed ground paddle must be connected to RF/DC ground.	→ GND =
9	VG	Adjust VGLO for -1V to 0V to set the multiplier quiescent current to 150mA	VG =
10	LOIN	LO Input Port. The recommended LO Power is 0 to 6 dBM	LOIN O
13	VDLO1	Bias for Multiplier input Buffer Amp. The recommended DC voltage is 3V	OVDLO1, VDLO2
14	VDLO2	Bias for Multiplier output Buffer Amp. The recommended DC voltage is 3V	

GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz

Typical Application


C1, C4, C10, C14, C16	100 pF Capacitor, 0402 Pkg.
C2, C5, C11, C13, C15	0.1uF Capacitor, 0402 Pkg.
C3, C6, C12, C17, C19	4.7 μF Capacitor, Case A Pkg.

GaAs MMIC I/Q DOWNCONVERTER 37 - 44 GHz

Evaluation PCB

List of Materials for Evaluation PCB Eval01-HMC6147ALC5A [1]

Item	Description
J1, J2	SMA Connector
J3, J4	K-Connector SRI
J5 - J10	DC Pins
C1, C4, C10, C14, C16	100 pF Capacitor, 0402 Pkg.
C2, C5, C11, C13, C15	0.1 uF Capacitor, 0402 Pkg.
C3, C6, C12, C17, C18	4.7 μF Capacitor, Case A
U1	HMC6147ALC5A Downconverter
PCB [2]	600-00029-00 Evaluation Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR, FR4 or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.