imall

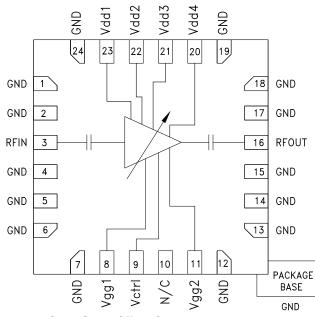
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


v00.0312

Typical Applications

The HMC6187LP4E is ideal for:

- Point-to-Point Radio
- Point-to-Multi-Point Radio
- EW & ECM Subsystems
- Ka-Band Radar & VSAT
- Test Equipment

Functional Diagram

HMC6187LP4E

VARIABLE GAIN AMPLIFIER 27 - 31.5 GHz

Features

Wide Gain Control Range: 13 dB Single Control Voltage Output IP3 @ Max Gain: +31 dBm Output P1dB: +24 dBm No External Matching 24 Lead 4x4 mm SMT Package: 16 mm²

General Description

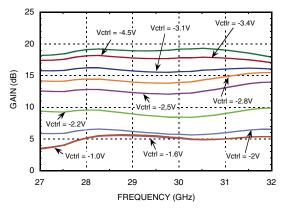
The HMC6187LP4E is a GaAs MMIC pHEMT analog variable gain amplifier and/or driver amplifier which operates between 27 and 31.5 GHz and is ideal for microwave radio applications. The amplifier provides up to 19 dB of gain, output P1dB of up to +24 dBm, and up to +31 dBm of output IP3 at maximum gain, while requiring 230 mA from a +5V supply. A gain control voltage (Vctrl) is provided to allow variable gain control up to 13 dB. Gain flatness is excellent making the HMC6187LP4E ideal for EW, ECM and radar applications. The HMC6187LP4E is housed in a RoHS compliant 4 x 4 mm plastic QFN leadless package and is compatible with high volume surface mount manufacturing.

Electrical Specifications, $T_{A} = +25^{\circ}C$ *,* Vdd1*,* 2*,* 3*,* 4 = 5V*,* VctrI= -4.5V*,* Idd = 230 mA^[1]

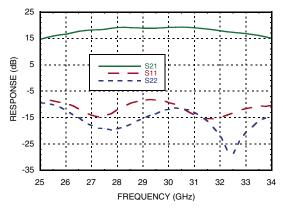
Parameter	Min.	Тур.	Max.	Units
Frequency Range		27 - 31.5	·	GHz
Gain ^[2]	16	19		dB
Gain Flatness		±0.5		dB
Gain Variation Over Temperature		0.02		dB/ °C
Gain Control Range		13		dB
Noise Figure ^[2]		4.5		dB
Input Return Loss		12		dB
Output Return Loss		15		dB
Output Power for 1 dB Compression (P1dB) [2]	21	24		dBm
Saturated Output Power (Psat) [2]		25		dBm
Output Third Order Intercept (IP3) [2]		31		dBm
Total Supply Current (Idd)		230		mA

[1]Set Vctrl = -4.5V and then adjust Vgg1, 2 between -2V to 0V to achieve Idd = 230 mA typical.

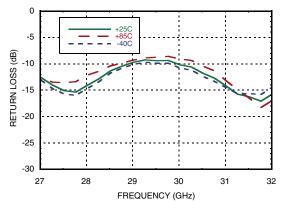
[2] Board loss subtracted out.


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

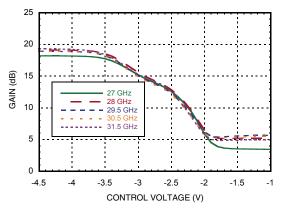
VARIABLE GAIN AMPLIFIER 27 - 31.5 GHz

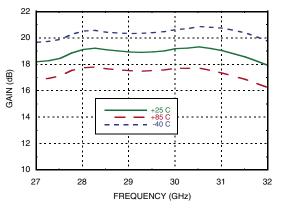

ROHS V EARTH FRIENDLY

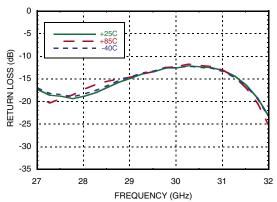
Gain vs. Control Voltage Range



v00.0312


Broadband Gain & Return Loss


Input Return Loss vs. Temperature

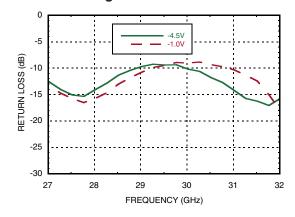

Gain vs. Control Voltage

Gain vs. Temperature

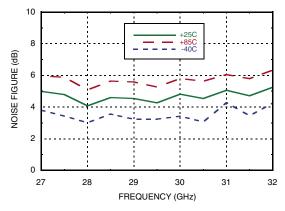
Output Return Loss vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

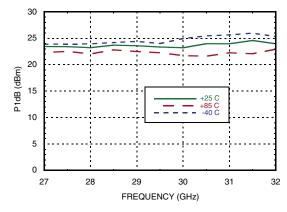
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D


2

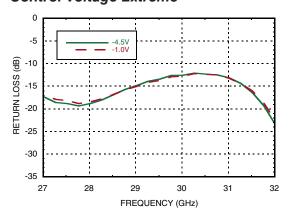
VARIABLE GAIN AMPLIFIER 27 - 31.5 GHz



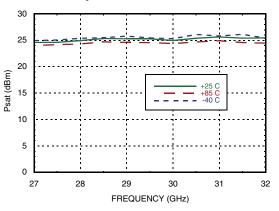
Input Return Loss @ Control Voltage Extreme



v00.0312


Noise Figure vs. Temperature

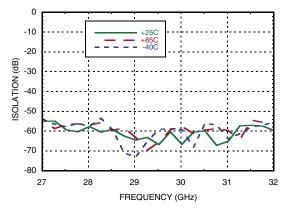

P1dB vs. Temperature, Vctrl= -4.5V


Output Return Loss @ Control Voltage Extreme

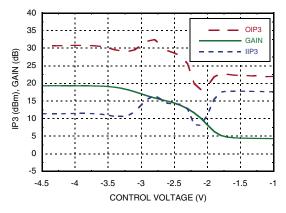
Noise Figure vs. Control Voltage

Psat vs. Temperature, Vctrl=-4.5V

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

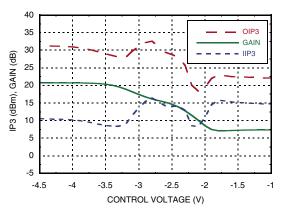


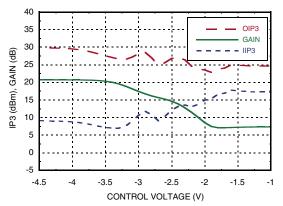
VARIABLE GAIN AMPLIFIER 27 - 31.5 GHz


ROHS

Reverse Isolation vs. Temperature

v00.0312


IP3 and Gain @ 27 GHz Pin = -7 dBm


40 35 30 IP3 (dBm) 25 +25 C +85 C -40 C ____ 20 15 10 27 28 29 30 31 32 FREQUENCY (GHz)

Output IP3 vs. Temperature, Vctrl=-4.5V

IP3 and Gain @ 29.5 GHz Pin = -7 dBm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v00.0312

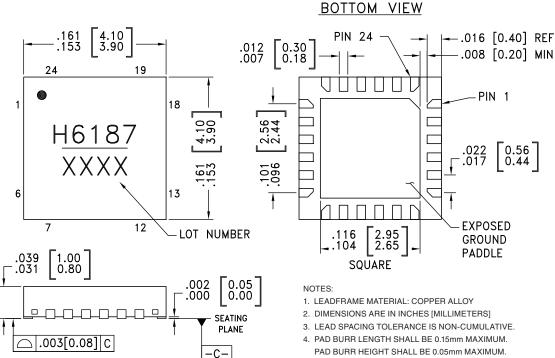
VARIABLE GAIN AMPLIFIER

HMC6187LP4E

27 - 31.5 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd1, 2, 3)	+5.5V	
Gate Bias Voltage (Vgg1, 2)	-2.5 to 0V	
Gain Control Voltage (Vctrl)	-5 to 0V	
RF Power Input (RFIN)	+5 dBm	
Channel Temperature	175 °C	
Continuous Pdiss (T = 85 °C) (derate 20.3 mW/°C above 85 °C) ^[1]	1.83 W	
Thermal Resistance (Channel to ground paddle)	49.2 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 0 Passed 100V	


Bias Voltage

Vdd1,2,3 (V)	Idd Total (mA)
+5V	230
Vgg1,2 (V)	Igg Total (mA)
0V to -2V	<0.2 mA
Vctrl (V)	lctrl (mA)
-4.5V to -1V	<1 mA

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMU 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- PACKAGE WARP SHALL NOT EXCEED 0.03000.
 ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC6187LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[1]	H6187 XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

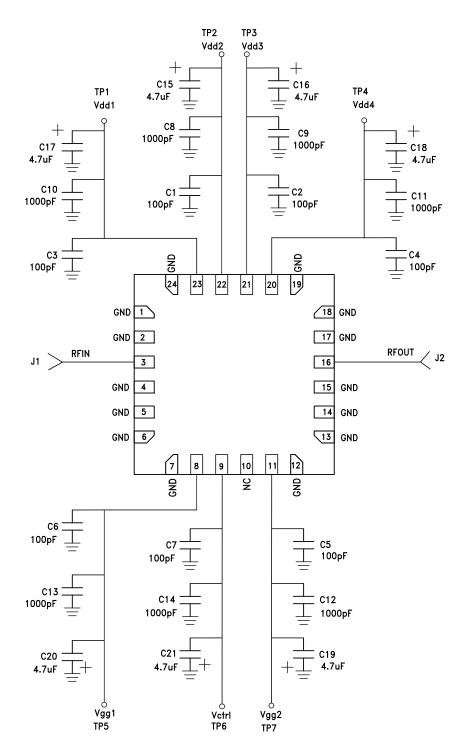
v00.0312

VARIABLE GAIN AMPLIFIER 27 - 31.5 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 17, 18, 19, 24	GND	These pins and exposed ground paddle must be connected to RF/DC ground.	
3	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN O
8, 11	Vgg1, 2	Adjust voltage to achieve typical Idd. Please follow "MMIC Amplifier Biasing Procedure" application note.	Vgg1,2
9	Vctrl	Gain control Voltage for the amplifier. See assembly diagram for required external components.	Vctrl O
10	NC	The pins are not connected internally: however all data shown herein was measured with these pins connected to RF/DC ground externally.	
16	RFOUT	This pad is AC coupled and matched to 50 Ohms.	
20, 21, 22, 23	Vdd4, 3, 2, 1	Drain Bias Voltage for the amplifier. See assembly diagram for required external components	OVdd1−4

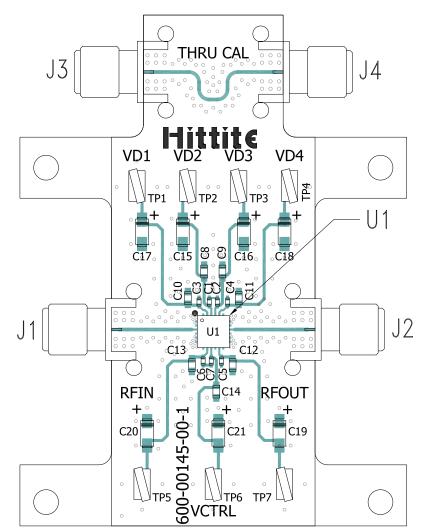
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v00.0312

VARIABLE GAIN AMPLIFIER 27 - 31.5 GHz

Application Circuit


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

VARIABLE GAIN AMPLIFIER 27 - 31.5 GHz

Evaluation PCB

v00.0312

List of Materials for Evaluation PCB EVAL01-HMC6187LP4E^[1]

Item	Description
J1 - J4	PCB Mount K Connectors
TP1 - TP7	DC Pin
C1 - C7	100 pF Capacitor, 0402 Pkg.
C8 - C14	10,000 pF Capacitor, 0603 Pkg.
C15 - C21	4.7 μF Capacitor, CASE A
U1	HMC6187LP4E Variable Gain Amplifier
PCB [2]	600-00145-00 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.