

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

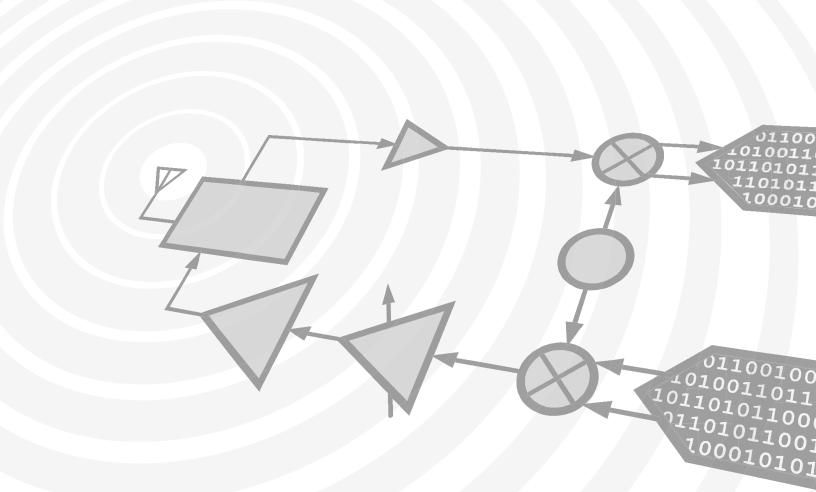
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

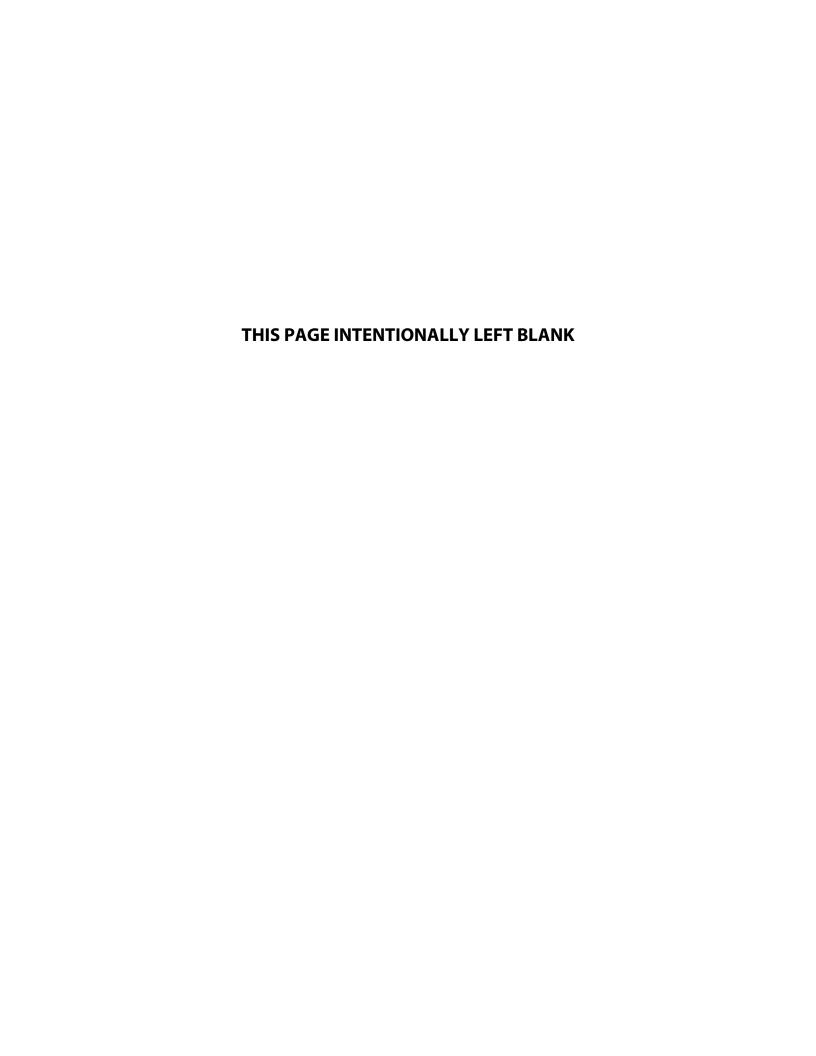
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

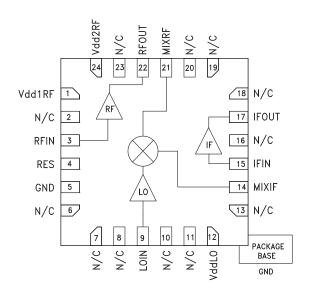
HMC623LP4 / 623LP4E

VAVE CORPORATION V01.0708 RFIC DOWNCONVERTER SMT, 1.8 - 2.7 GHz

Typical Applications

The HMC623LP4 / HMC623LP4E is ideal for:

- Cellular/3G & LTE/WiMAX/4G
- Base Stations & Repeaters
- WiMAX & WiBro
- Broadband & Fixed Wireless
- Test & Measurement Equipment


Features

Low Noise Figure: 4 dB High Output IP3: +39 dBm Low Input LO Drive: 0 dBm

High LO to RF Isolation: 45 dB High Conversion Gain: 33 dB

24 Lead 4x4mm SMT Package: 16mm²

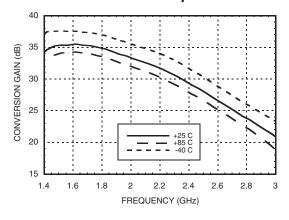
Functional Diagram

General Description

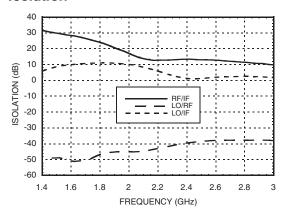
HMC623LP4E is а highly integrated downconverter IC that operates from 1.8 to 2.7 GHz. The HMC623LP4E incorporates a high dynamic range, single-balanced mixer core with integrated RF, LO and IF amplifiers, making it ideal for compact transceiver applications in GSM, WCDMA, TD-SCDMA, WiBro and WiMAX. This versatile converter RFIC operates with a low LO input power level of only 0 dBm, provides up to 33 dB conversion gain, and exhibits +39 dBm Output IP3. The integrated RF amplifier provides for an overall noise figure of only 4 dB.

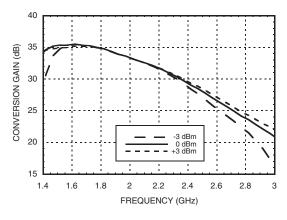
Electrical Specifications, $T_A = +25$ °C, IF = 200 MHz, LO = 0 dBm, Vbias [1] = +5V [2]

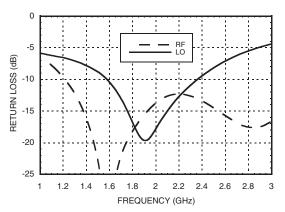
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF		1.8 - 2.2			2.2 - 2.7		GHz
Frequency Range, IF		50 - 650			50 - 650		MHz
Frequency Range, LO		1.6 - 2.0			2.0 - 2.5		GHz
Conversion Gain	30	33		23	28		dB
Noise Figure (SSB)		4			4		dB
LO to RF Isolation	39	45		31	38		dB
IP3 (Output)		34			39		dBm
1 dB Compression (Output)		19			20		dBm
LO Drive Input Level (Typical)	-3 to +3		-3 to +3			dBm	
Supply Current (IBIAS)		250	310		245	310	mA

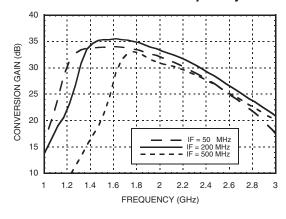

^[1] See Application circuit

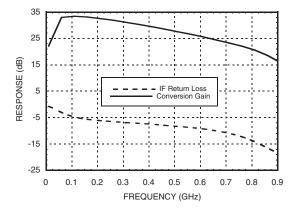
^[2] Unless otherwise noted, all measurements performed as a downconverter with low side LO & IF= 200 MHz



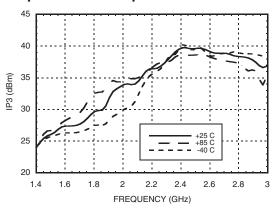

Conversion Gain vs. Temperature

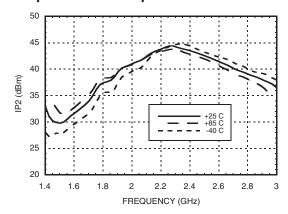

Isolation

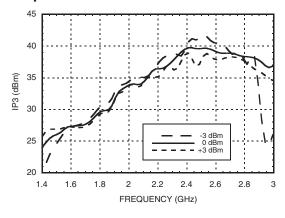

Conversion Gain vs. LO Drive

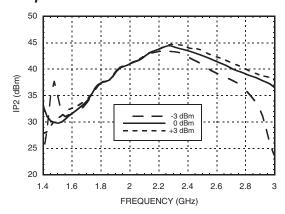

Return Loss

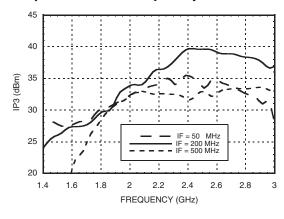
Conversion Gain vs. IF Frequency

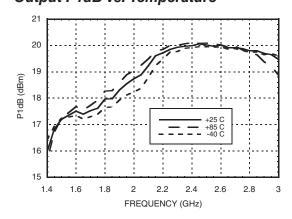

IF Bandwidth, LO = 1.9 GHz



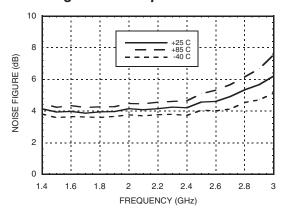

Output IP3 vs. Temperature


Output IP2 vs. Temperature


Output IP3 vs. LO Drive


Output IP2 vs. LO Drive

Output IP3 vs. IF Frequency


Output P1dB vs. Temperature

Noise Figure vs. Temperature

Absolute Maximum Ratings

RF / IF Input (Vbias = +5V)	+10 dBm
LO Drive (Vbias = +5V)	+10 dBm
Vbias	+5.5 Vdc
Junction Temperature	150 °C
Continuous Pdiss (T = 85°C) (derate 21.8 mW/°C above 85°C)	1.42 W
Thermal Resistance (junction to ground paddle)	45.7 °C/W
Storage Temperature	-65 to +150°C
Operating Temperature	-40 to +85°C

Typical Supply Current

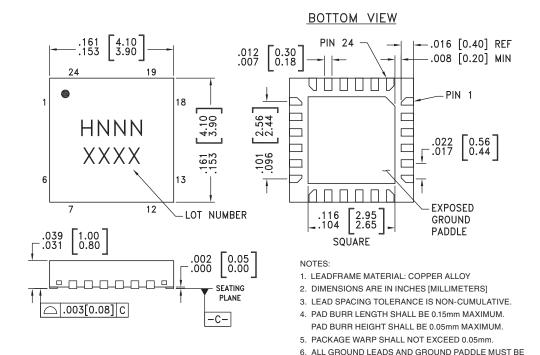
Vbias (V)	Ibias (mA)
4.5	205
5.0	250
5.5	300

Absolute Bias Resistor (R1) Range & Recommended Bias Resistor Values for Idd RF [3]

\/hiaa (\/\)		Idd RF		
Vbias (V)	Min (Ohms)	R1 Ohms	idd AF	
			120	71
5V	0	Open Circuit	470	89
			10k	117

^[3] External bias resistor R1 sets the DC current of the RF Amp

Typical Performance Cascade Analysis (RF = 1800 to 2200 MHz, IF = 50 to 300 MHz, LO = Low Side or High Side)


		Component Level				Cumulative MCM Performance				
Description	Gain (dB)	NF (dB)	OP1dB (dBm)	OIP3 (dBm)	+5V Current	Gain (dB)	OP1dB (dBm)	NF (dB)	OIP3 (dBm)	IIP3 (dBm)
RF LNA	19.5	0.8	20.0	36.0	117.0	19.5	20.0	0.8	36.0	16.5
RF Filter*	-1.5	1.5				18.0	18.5	0.8	34.5	16.5
Passive Mixer w/ LO Amp	-9.0	9.2	11.0	24.0	45.0	9.0	7.2	1.2	21.7	12.7
IF Amp	22.5	2.8	20.5	37.0	88.0	31.5	20.0	1.6	36.2	4.7
HMC623LP4	Cumulative MCM Performance			250.0	31.5	20.0	1.6	36.2	4.7	

^{*} RF image rejection filter is not included in the released eval boards.

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC623LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H623 XXXX
HMC623LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H623 XXXX

SOLDERED TO PCB RF GROUND.

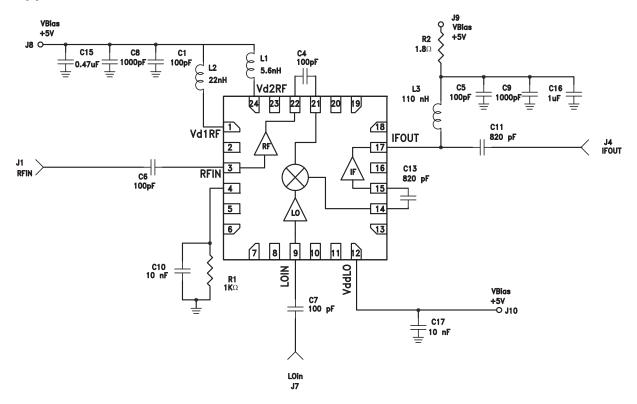
LAND PATTERN.

7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions

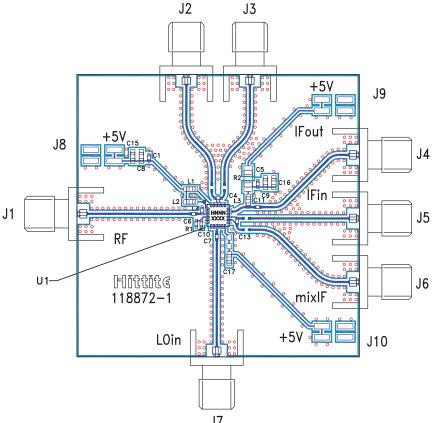
Pin Number	Function	Description	Interface Schematic
1	Vdd1RF	Bookingston	Vdd1RF,
24	Vdd2RF	Power Supply Voltage for the RF amplifier. External bypass capacitors of 100 pF, 1000pF, and 2.2 µF are required.	Vdd2RF
2, 4, 6 - 8, 10, 11, 13, 16, 18 - 20, 23	N/C	No connection necessary. These pins may be connected to RF/DC Ground	
3	RFIN	This pin is DC coupled and matched to 50 Ohms.	RFIN O
4	RES	This pin is used to set the DC current of the RF amplifier by selection of the external bias resistor. See application circuit and bias resistor value table.	RES
5	GND	Backside of package has exposed metal ground paddle that must also be connected to ground.	⊖ GND =
9	LOIN	This pin is AC coupled and matched to 50 Ohms.	FOING-WALL
12	VddLO	Power supply for LO amplifier. An external RF bypass capacitor is required.	VddLO Q
14	MIXIF	For applications not requiring operation to DC this port should be DC blocked externally using a series capacitor. Choose value of capacitor to pass IF frequency desired. For operation to DC, this pin must not sink/source more than 40 mA of current or failure may result.	MIXIF
15	IFIN	This pin is DC coupled. An off chip DC blocking capacitor is required.	IFOUT
17	IFOUT	IF output and DC Bias (Vcc) for the output stage.	



Pin Descriptions (Continued)

Pin Number	Function	Description	Interface Schematic
21	MIXRF	This pin is DC coupled and matched to 50 Ohms.	MIXRFO
22	RFOUT	This pin is matched to 50 Ohms.	

Application Circuit



.0708

RFIC DOWNCONVERTER SMT, 1.8 - 2.7 GHz

Evaluation PCB

List of Materials for Evaluation PCB 118873 [1]

Item	Description
J1 - J7	SMA Connector
J8 - J10	2mm 12 pos Vertical Molex Connector
C1, C4 - C7	100 pF Capacitor, 0402 Pkg.
C8, C9	1000 pF Capacitor, 0603 Pkg.
C10	1000 pF Capacitor, 0402 Pkg.
C11, C13	820 pF Capacitor, 0402 Pkg.
C15	0.47 μF Capacitor, 0603 Pkg.
C16	1 μF Capacitor, 0603 Pkg.
C17	10 kpF Capacitor, 0603 Pkg.
R1	1k Ohm Resistor, 0402 Pkg.
R2	1.8 Ohm Resistor, 1206 Pkg.
L1	5.6 nH Inductor, 0603 Pkg.
L2	22 nH Inductor, 0603 Pkg.
L3	110 nH Inductor, 0603 Pkg.
U1	HMC623LP4(E) - Downconverter
PCB [2]	118872 Evaluation Board

[1] Reference this number when ordering complete evaluation PCB $\,$

[2] Circuit Board Material: Arlon 25RF, FR4

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.