

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC667LP2 / 667LP2E

v02.1110

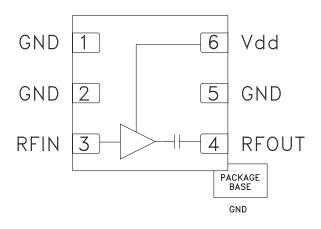
GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 2.3 - 2.7 GHz

Typical Applications

The HMC667LP2(E) is ideal for:

- WiMAX, WiBro & Fixed Wireless
- SDARS & WLAN Receivers
- Infrastructure & Repeaters
- Access Points
- Telematics & DMB

Features


Low Noise Figure: 0.75 dB

High Gain: 19 dB

High Output IP3: +29.5 dBm Single Supply: +3V to +5V

6 Lead 2x2mm DFN Package: 4 mm2

Functional Diagram

General Description

The HMC667LP2(E) is a GaAs PHEMT MMIC Low Noise Amplifier that is ideal for WiMAX, WLAN and fixed wireless receivers operating between 2300 and 2700 MHz. This self-biased LNA has been optimized to provide 0.75 dB noise figure, 19 dB gain and +29.5 dBm output IP3 from a single supply of +5V. Input and output return losses are excellent and the LNA requires minimal external matching and bias decoupling components. The HMC667LP2(E) can also operate from a +3V supply for lower power applications.

Electrical Specifications, $T_A = +25^{\circ}$ C

Damaradar	Vdd = +3 Vdc			Vdd = +5 Vdc			l laita
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	2300 - 2700 2300 - 2700		MHz				
Gain	14	17.5		16	19		dB
Gain Variation Over Temperature		0.01			0.01		dB/ °C
Noise Figure		0.9	1.2		0.75	1.1	dB
Input Return Loss		10			12		dB
Output Return Loss		15			14		dB
Output Power for 1 dB Compression (P1dB)	9.5	11.5		13.5	16.5		dBm
Saturated Output Power (Psat)		12.5			17		dBm
Output Third Order Intercept (IP3)		22			29.5		dBm
Supply Current (Idd)		24	32		59	75	mA

HMC667* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

· HMC667LP2 Evaluation Board

DOCUMENTATION

Data Sheet

• HMC667 Data Sheet

TOOLS AND SIMULATIONS

HMC667 S-Parameter

REFERENCE MATERIALS 🖵

Quality Documentation

- HMC Legacy PCN: LP2E and LP2 QFN Alternative Assembly Source
- Package/Assembly Qualification Test Report: 16L 3x3mm QFN Package (QTR: 11003 REV: 02)
- Package/Assembly Qualification Test Report: LP2, LP2C, LP3, LP3B, LP3C, LP3D, LP3F, LP3G (QTR: 2014-0364)
- Semiconductor Qualification Test Report: PHEMT-D (QTR: 2013-00254)

DESIGN RESOURCES

- HMC667 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC667 EngineerZone Discussions.

SAMPLE AND BUY 🖵

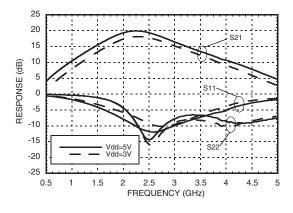
Visit the product page to see pricing options.

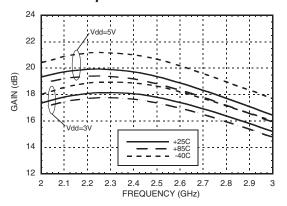
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

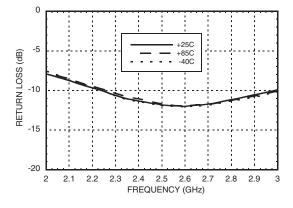
DOCUMENT FEEDBACK 🖳

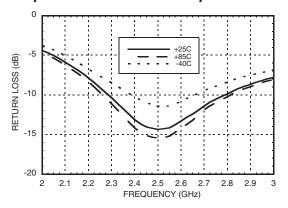
Submit feedback for this data sheet.

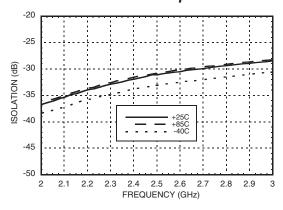

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

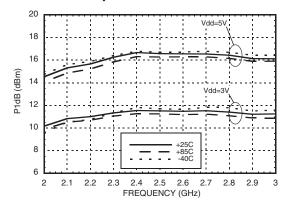


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 2.3 - 2.7 GHz


Broadband Gain & Return Loss

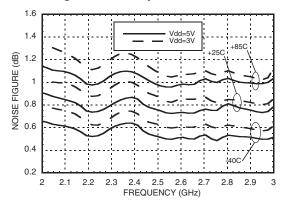

Gain vs. Temperature

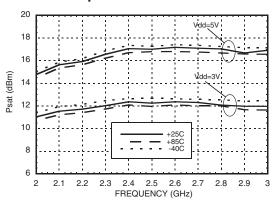

Input Return Loss vs. Temperature [1]


Output Return Loss vs. Temperature [1]

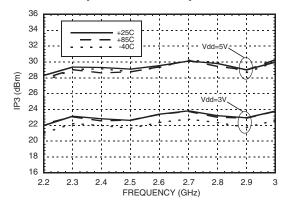
Reverse Isolation vs. Temperature [1]

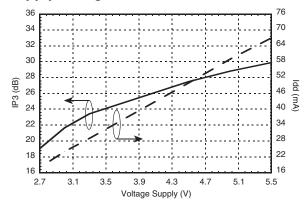
P1dB vs. Temperature

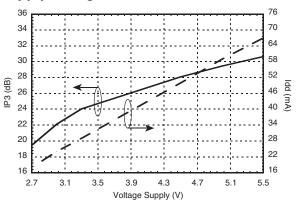

[1] Vdd = 5V



GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 2.3 - 2.7 GHz

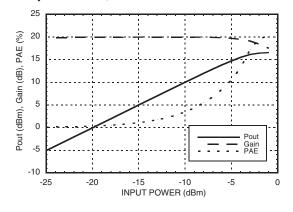

Noise Figure vs. Temperature [1]

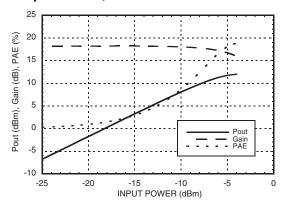

Psat vs. Temperature


Output IP3 vs. Temperature

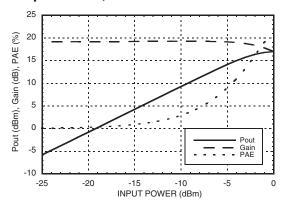
Output IP3 and Idd vs. Supply Voltage @ 2300 MHz

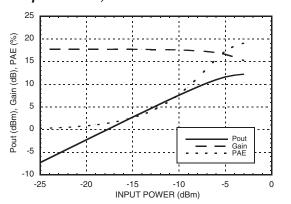
Output IP3 and Idd vs. Supply Voltage @ 2500 MHz

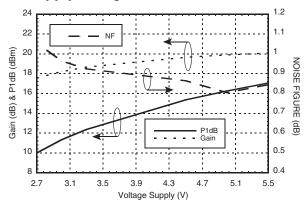

[1] Measurement reference plane shown on evaluation PCB drawing.

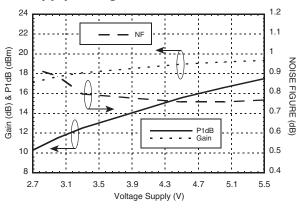


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 2.3 - 2.7 GHz


Output Power, Gain & PAE @ 2300 MHz [1]


Output Power, Gain & PAE @ 2300 MHz [2]

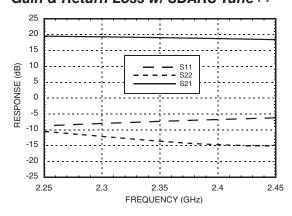

Output Power, Gain & PAE @ 2500 MHz [1]


Output Power, Gain & PAE @ 2500 MHz [2]

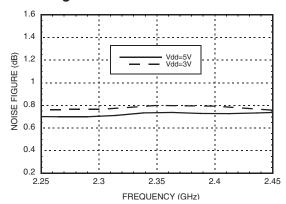
P1dB, Gain, & Noise Figure vs. Supply Voltage @ 2300 MHz

P1dB, Gain, & Noise Figure vs. Supply Voltage @ 2500 MHz

[1] Vdd = 5V [2] Vdd = 3V



HMC667LP2 / 667LP2E


v02.1110

GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 2.3 - 2.7 GHz

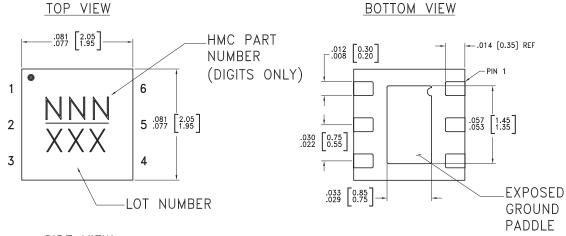
Gain & Return Loss w/ SDARS Tune [1]

Noise Figure vs. Vdd w/ SDARS Tune [2]

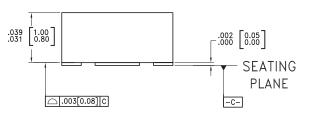
Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+6 Vdc
RF Input Power (RFIN)	+10 dBm
Channel Temperature	150 °C
Continuous Pdiss (T= 85 °C) (derate 5.88 mW/°C above 85 °C)	0.38 W
Thermal Resistance (Channel to Ground Paddle)	170 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

[1] Vdd = 5V [2] Measurement reference plane shown on evaluation PCB drawing.


HMC667LP2 / 667LP2E

v02.1110



GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 2.3 - 2.7 GHz

Outline Drawing

SIDE VIEW

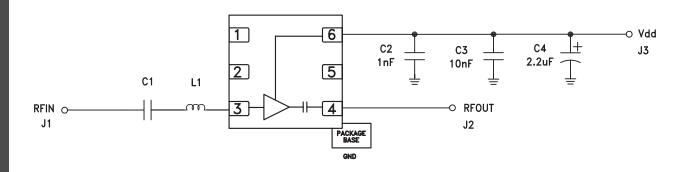
NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC667LP2	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	667 XXX	
HMC667LP2E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>667</u> XXX	

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 3-Digit lot number XXX

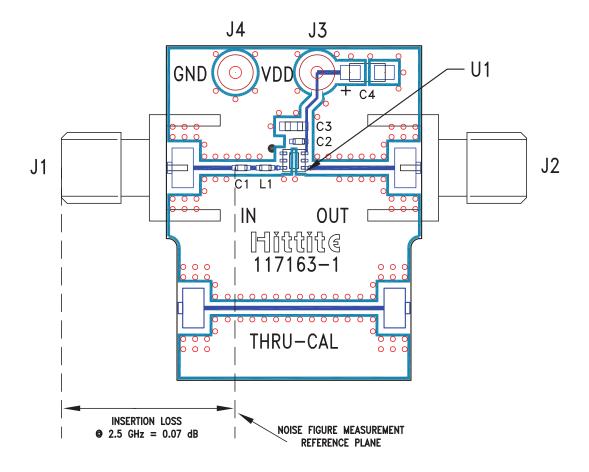

GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 2.3 - 2.7 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 2, 5	GND	These pins and package bottom must be connected to RF/DC ground.	GND =	
3	RFIN	This pin is DC coupled See the application circuit for off-chip components	RFIN O ESD =	
4	RFOUT	This pin is AC coupled and matched to 50 Ohms.	RFOUT ESD =	
6	Vdd	Power supply voltage. Bypass capacitors are required. See application circuit.	Vdd O ESD	

Components for Selected Band

Components	C1	L1	Evaluation PCB Number
Broadband	2.7 pF	2.0 nH	121891
SDARS	2.2 pF	4.3 nH	122404



GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 2.3 - 2.7 GHz

Evaluation PCB

List of Materials for Evaluation PCB [1]

Item	Description		
J1 - J2	PCB Mount SMA Connector		
J3 - J4	DC Pin		
C1	2.7 pF Capacitor, 0402 Pkg.		
C2	1000 pF Capacitor, 0402 Pkg.		
C3	10 nF Capacitor, 0603 Pkg.		
C4	2.2 µF Capacitor, CASE-A Tantalum		
L1	2 nH Inductor, 0402 Pkg.		
U1	HMC667LP2(E) Amplifier		
PCB [2]	117163 Evaluation PCB		

^[1] When requesting an evaluation board, please reference the appropriate evaluation PCB number listed in the table "Components for Selected Band" on previous page

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350