imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

FEATURES

Equivalent input bandwidth: 9.3 GHz typical Propagation delay: 85 ps typical Overdrive and slew rate dispersion: 10 ps typical Input signal minimum pulse width: 60 ps typical Resistor programmable hysteresis Differential latch control Power dissipation: 140 mW typical 16-terminal, 3 mm × 3 mm, ceramic leadless chip carrier (LCC) 16-lead lead frame chip scale package (LFCSP)

APPLICATIONS

Automatic test equipment (ATE) applications High speed instrumentation Digital receiver systems Pulse spectroscopy High speed trigger circuits Clock and data restoration

GENERAL DESCRIPTION

The HMC674LC3C/HMC674LP3E are silicon germanium (SiGe), monolithic, ultrafast comparators that feature reduced swing positive emitter-coupled logic (RSPECL) output drivers and latch inputs. These comparators support 10 Gbps operation and provide 85 ps propagation delay and an input signal minimum pulse width of 60 ps with 0.2 ps rms of random jitter (RJ). Overdrive and slew rate dispersion is typically 10 ps, making the HMC674LC3C/HMC674LP3E ideal for a wide range of

9.3 GHz Latched Comparator with RSPECL Output Stage

HMC674LC3C/HMC674LP3E

Figure 1. HMC674LC3C/HMC674LP3E Functional Block Diagram

applications from ATE to broadband communications. The RSPECL output stages directly drive 400 mV into a 50 Ω resistor terminated to V_{TT} = (V_{CCO} – 2.0 V), where V_{TT} is the PECL termination voltage (see Figure 16). The HMC674LC3C/HMC674LP3E feature a high speed latch and programmable hysteresis. These devices can operate in either latch mode or as a tracking comparator.

Rev. K

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Latch Enable (LE/ $\overline{\text{LE}}$) Specifications	3
DC Output Specifications	3
AC Specifications	4
Power Supply Specifications	4
Timing Descriptions	5
Absolute Maximum Ratings	6

REVISION HISTORY

Two Hittite Mircrowave product data sheets have been reformatted to the styles and standards of Analog Devices, Inc., and combined into one data sheet.

12/2016—v12.0616 (HMC674LC3C and HMC674LP3E) to Rev. K

Updated FormatUr	niversal
Changes to Title, Features Section, and General Description	on
Section	1
Changes to Table 7	6
Changes to Table 8	7
Changes to Figure 10	9
Changed Operational Description Section to Theory of	
Operation Section	10
Changes to Figure 15 and Table 9	12
Updated Outline Dimensions	
Changes to Ordering Guide	13

ESD Caution	6
Pin Configurations and Function Descriptions	7
Interface Schematics	8
Typical Performance Characteristics	9
Theory of Operation	10
Power Sequencing	10
Applications Information	11
Evaluation Printed Circuit Board (PCB)	11
Application Circuits	12
Outline Dimensions	13
Ordering Guide	13

SPECIFICATIONS

 T_{A} = 25°C, V_{CCI} = 3.3 V, V_{CCO} = 2.0 V, V_{EE} = –3 V, V_{TT} = 0 V, unless otherwise noted.

Table 1.

Parameter	Min	Тур	Max	Unit
INPUT				
Voltage Range	-2		+2	V
Differential Voltage	-1.75		+1.75	V
Offset Voltage (V _{os})		±5		mV
Temperature Coefficient		15		μV/°C
Bias Current		15		μA
Temperature Coefficient		50		nA/°C
Offset Current		4		μA
Impedance		50		Ω
Common-Mode		350		kΩ
Differential		15		kΩ
Active Gain		48		dB
Common-Mode Rejection Ratio (CMRR)		80		dB
Hysteresis, R _{HYS} = Infinity		±1		mV

LATCH ENABLE (LE/LE) SPECIFICATIONS

Table 2.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
LATCH ENABLE (LE/LE)						
Input Impedance			8		kΩ	Each pin
To Output Delay	tplol, tploh		85		ps	Input overdrive voltage (V _{OD}) = 200 mV
Minimum Pulse Width	t _{PL}		20		ps	$V_{OD} = 200 \text{ mV}$
Input Range		1.6		2.4	V	$V_{OD} = 200 \text{ mV}$
LATCH ENABLE (LE/LE) TIME						
Setup	ts		45		ps	$V_{OD} = 200 \text{ mV}$
Hold	t _H		-42		ps	

DC OUTPUT SPECIFICATIONS

 $V_{\rm CCO}$ = 2.00 V, $V_{\rm TT}$ = 0 V, unless otherwise noted.

Table 3.

Parameter	Symbol	Min	Тур	Max	Unit
OUTPUT VOLTAGE					
High Level	V _{OH}	1.03	1.09	1.14	V
Low Level	Vol	0.65	0.71	0.81	V
Differential Swing		440	760	980	mV p-p

AC SPECIFICATIONS

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
PROPAGATION DELAY (tpdl, tpd, tpdh)	80	85	110	ps	$V_{OD} = 500 \text{ mV}$
Temperature Coefficient		0.45		ps/°C	
Skew (Rising to Falling Transition)		10		ps	$V_{OD} = 500 \text{ mV}$
V _{OD} ¹ DISPERSION		10		ps	$50 \text{ mV} < V_{\text{OD}} < 1 \text{ V}$
PROPAGATION DELAY (tpd) vs. INPUT COMMON-MODE VOLTAGE (VCM) DISPERSION		8		ps	$V_{OD} = 500 \text{ mV},$ -1.75 V < V_{CM} < +1.75 V
NOISE (RETURN TO INPUT, RTI)		5.9		nV/√Hz	
EQUIVALENT INPUT BANDWIDTH (BW _{EQ}) ²	8.6	9.3	12	GHz	
JITTER					10 Gbps with ±100 mV overdrive
Deterministic		2		ps p-p	
Random		0.2		ps rms	
INPUT SIGNAL MINIMUM PULSE WIDTH		60		ps	$V_{CM} = 0 V$, ±100 mV overdrive
Q/Q TIME					From 20% to 80%
Rise		24		ps	
Fall		15		ps	

 1 V_{OD} is the input overdrive voltage, for example, (V_{INP} – V_{INN} – V_{OS}), where V_{OS} is the input offset voltage. 2 Equivalent input bandwidth is calculated by

_

$$BW_{EQ} = 0.22/\sqrt{(TRCOMP^2 - TRIN^2)}$$

where:

TRIN is the 20%/80% transition time of a quasi Gaussian signal applied to the comparator input. *TRCOMP* is the effective transition time digitized by the comparator.

POWER SUPPLY SPECIFICATIONS

Table 5.

Parameter	Symbol	Min	Тур	Max	Unit
VOLTAGE					
Power Supply Voltage Input Stage	Vcci	3.135	3.3	3.465	V
Power Supply Voltage Output Stage	V _{cco}	1.8	3.3	3.465	V
Negative Power Supply (–3 V)	VEE	-3.15	-3.0	-2.85	V
CURRENT					
Supply Input	Іссі		9		mA
Supply Output	Icco	45			mA
VEE	I _{EE}		19		mA
POWER DISSIPATION	PD		140		mW
POWER SUPPLY REJECTION RATIO	PSRR				
V _{CCI}			38		dB
V _{EE}			38		dB

TIMING DESCRIPTIONS

Table 6.

Parameter	Symbol	Description
Input to Output High Delay	t pdh	The propagation delay measured from the time the input signal crosses the reference $(\pm$ the input offset voltage) to the 50% point of an output low to high transition.
Input to Output Low Delay	t PDL	The propagation delay measured from the time the input signal crosses the reference $(\pm$ the input offset voltage) to the 50% point of an output high to low transition.
Latch Enable (LE/ $\overline{\text{LE}}$) to Output High Delay	t ploh	The propagation delay measured from the 50% point of the latch enable (LE/LE) signal high to low transition to the 50% point of an output low to high transition.
Latch Enable (LE/LE) to Output Low Delay	t plol	The propagation delay measured from the 50% point of the latch enable (LE/LE) signal high to low transition to the 50% point of an output high to low transition.
Minimum Hold Time	tн	The minimum time after the positive transition of the latch enable (LE/LE) signal that the input signal must remain unchanged to be acquired and held at the outputs.
Minimum Latch Enable (LE/LE) Pulse Width	t _{PL}	The minimum time that the latch enable (LE/LE) signal must be low to acquire an input signal change.
Minimum Setup Time	ts	The minimum time before the positive transition of the latch enable (LE/LE) signal that an input signal change must be present to be acquired and held at the outputs.
Output Rise Time	t _R	The amount of time required to transition from a low to a high output as measured at the 20% and 80% points.
Output Fall Time	t⊧	The amount of time required to transition from a high to a low output as measured at the 20% and 80% points.
Input Overdrive Voltage	Vod	The difference between the input voltages (V_{INP} and V_{INN}).

Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 7.

Parameter	Rating
Supply Voltage	
Input (V _{CCI} to GND)	–0.5 V to +4 V
Output (Vcco to GND)	–0.5 V to +4 V
Positive Differential (Vcci to Vcco)	–0.5 V to +3.3 V
VEE Supply to GND	−3.3 V to +0.5 V
Input Voltage	-2 V to +2 V
Differential	-2 V to +2 V
Latch Enable (LE/LE)	-0.5 V to V _{CCI} + 0.5 V
Applied Voltage (HYS)	V _{EE} to GND
Current	
Maximum Input	±20 mA
Output	40 mA
Continuous Power Dissipation (P_{DISS}), $T_A = 85^{\circ}C$	
Derate 43.5 mW/°C Above 85°C (HMC674LP3E)	1.74 W
Derate 20.4 mW/°C Above 85°C (HMC674LC3C)	0.816 W
Junction Temperature	125°C
Maximum Peak Reflow Temperature ¹	
MSL1 and MSL3	260°C
Thermal Resistance (θ _{JC})	
HMC674LP3E	23°C/W
HMC674LC3C	49°C/W
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	-40°C to +85°C
ESD Sensitivity, Human Body Model (HBM)	Class 1A

¹ See the Ordering Guide section.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 8. HMC674LC3C/HMC674LP3E Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VTP	Termination Resistor Return Pin for V _P Input. See Figure 5 for the interface schematic.
2	INP	Noninverting Analog Input. See Figure 5 for the interface schematic.
3	INN	Inverting Analog Input. See Figure 5 for the interface schematic.
4	VTN	Termination Resistor Return Pin for V $_{ m N}$ Input. See Figure 5 for the interface schematic.
5, 16	Vcci	Positive Supply Voltage Input Stage. See Figure 6 for the interface schematic.
6	LE	Latch Enable Input Pin, Inverting Side. See the Theory of Operation section for additional information. See Figure 6 for the interface schematic.
7	LE	Latch Enable Input Pin, Noninverting Side. See the Theory of Operation section for additional information. See Figure 6 for the interface schematic.
8	NIC	Not Internally Connected. Connect this pin to ground for improved noise.
9, 12	Vcco	Positive Supply Voltage for the Output Stage. See Figure 7 for the interface schematic.
10	Q	Inverting Output. \overline{Q} is at logic low if the analog voltage at the noninverting input, INP, is greater than the analog voltage at the inverting input, INN, provided that the comparator is in track mode. See the Theory of Operation section for additional information. See Figure 7 for the interface schematic.
11	Q	Noninverting Output. Q is at logic high if the analog voltage at the noninverting input, INP, is greater than the analog voltage at the inverting input, INN, provided that the comparator is in track mode. See the Theory of Operation section for additional information. See Figure 7 for the interface schematic.
13	VEE	Negative Power Supply, –3 V. See Figure 6 for the interface schematic.
14	HYS	Hysteresis Control Pin. Leave this pin disconnected for zero hysteresis. Connect this pin to V _{EE} with a resistor to add the desired amount of hysteresis. See Figure 12 to determine the correct size of the R _{HYS} hysteresis control resistor. See Figure 8 for the interface schematic.
15	RTN	Return for ESD Protection.
	EPAD	Exposed Pad. The exposed pad must be connected to V _{EE} .

INTERFACE SCHEMATICS

Figure 5. VTP, VTN and INP, INN Interface Schematic

14861-005

Figure 6. *LE*, *LE* Interface Schematic

Figure 7. Q, \overline{Q} Interface Schematic

Figure 8. HYS Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 10. Output Voltage vs. Temperature

Figure 11. Normalized Propagation Delay (t_{PD}) vs. Common-Mode Voltage

Figure 12. Comparator Hysteresis vs. R_{HYS} Control Resistance

THEORY OF OPERATION

The HMC674LC3C/HMC674LP3E are latched comparators with a 9.3 GHz equivalent input bandwidth. These devices are comprised of three blocks: an input amplifier, a latch, and an output buffer. The latching circuit is level sensitive and consists of a single, high speed latch. The HMC674LC3C/HMC674LP3E comparators support 10 Gbps operation. The input signal minimum pulse width is 60 ps.

The HMC674LC3C/HMC674LP3E operate in either track (transparent) mode, where the output follows the logical value of the input, or latch (hold) mode, where the output value is held to the logical value of the comparison result of the input just prior to $(LE - \overline{LE})$ going high. Select track mode operation by either setting $(LE - \overline{LE})$ low or by floating the LE and \overline{LE} inputs. Select latch mode by setting $(LE - \overline{LE})$ high. The input impedance of the LE and \overline{LE} inputs is 8 k Ω ; however, these inputs can be terminated with 50 Ω external resistors, if desired.

When the clock inputs are dc-coupled, they operate at an input common-mode voltage of 2 V. In this case, any termination resistors ideally return to 2 V. If the clock inputs are ac-coupled to the HMC674LC3C/HMC674LP3E, return the input termination resistors to ground.

POWER SEQUENCING

As long as the input signal is not near the -2 V extreme, either V_{CC} or V_{EE} can be powered on first. However, if the input voltage is more negative than -1.8 V, use the following power-up sequence:

- $1. \quad V_{\text{EE}}$
- 2. V_{CCI} and V_{CCO} (if $V_{CCO} = V_{CCI}$)
- 3. V_{CCO} (if different than ground)

Note that the power-down sequence is the reverse of this sequence.

It is recommended to power up the HMC674LC3C or the HMC674LP3E before applying the input signal and to remove the input signal prior to powering either down. These recommendations are important if any of the inputs are more negative than -1.8 V.

APPLICATIONS INFORMATION EVALUATION PRINTED CIRCUIT BOARD (PCB)

Figure 13 shows the front side of the evaluation PCB, and Figure 14 shows the back side of the evaluation PCB.

The evaluation PCB used in the application must use RF circuit design techniques. Signal lines must have 50 Ω impedance, and

the package ground leads must be connected directly to the ground plane similar to that shown in Figure 15. Use a sufficient number of via holes to connect the top and bottom ground planes to provide good RF grounding to 10 GHz. The evaluation PCB shown in Figure 13 is available from Analog Devices, Inc., upon request.

Figure 13. Front Side of the Evaluation PCB

Figure 14. Back Side of the Evaluation PCB

APPLICATION CIRCUITS

See Figure 15 for the typical application circuit, Table 9 for the bill of materials, and Figure 16 for the output interfacing application circuit.

Figure 15. Typical Application Circuit

Table 9. Bill of Materials for the Evaluation PCB (125929-3)

ltem	Description				
J1	Eight position vertical header				
J2 to J7	2.92 mm, 40 GHz jacks				
8L	Terminal strip, single row, 3-pin surface mount (SMT)				
JP1, JP2	Two position vertical header				
C1 to C3, C5, C6, C8 to C10	100 pF capacitors, 0402 package				
C4, C7, C11	330 pF capacitors, 0402 package				
C12 to C14	4.7 μF tantalum capacitors				
TP1 to TP4	DC pin, swage mount test points				
U1	HMC674LC3C/HMC674LP3E comparator				
РСВ	125929-3 ¹ evaluation PCB, circuit board material is Rogers 4350 or Arlon 25FR				

¹ Reference this number when ordering complete evaluation PCB.

Figure 16. Output Interfacing Application Circuit, Output to Oscilloscope

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Body Material	Lead Finish	MSL Rating ²	Package Description	Package Option	Branding
HMC674LC3C	-40°C to +85°C	Alumina, White	Gold over Nickel	MSL3	16-Terminal LCC	E-16-1	<u>H674</u> XXXX
HMC674LC3CTR	–40°C to +85°C	Alumina, White	Gold over Nickel	MSL3	16-Terminal LCC	E-16-1	<u>H674</u> XXXX
HMC674LC3CTR-R5	–40°C to +85°C	Alumina, White	Gold over Nickel	MSL3	16-Terminal LCC	E-16-1	<u>H674</u> XXXX

Model ¹	Temperature Range	Package Body Material	Lead Finish	MSL Rating ²	Package Description	Package Option	Branding
HMC674LP3E	–40°C to +85°C	Low Stress, Injection Molded Plastic	100% Matte Sn	MSL1	16-Lead LFCSP	HCP-16-1	<u>H674</u> XXXX
HMC674LP3ETR	–40°C to +85°C	Low Stress, Injection Molded Plastic	100% Matte Sn	MSL1	16-Lead LFCSP	HCP-16-1	<u>H674</u> XXXX
125932-HMC674LC3C					HMC674LC3C Evaluation Board		
125932-HMC674LP3E					HMC674LP3E Evaluation Board		

¹ The HMC674LC3C, the HMC674LC3CTR, the HMC674LC3CTR-R5, the HMC674LP3E, and the HMC674LP3ETR are RoHS Compliant Parts. ² See the Absolute Maximum Ratings section.

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D14861-0-12/16(K)

www.analog.com

Rev. K | Page 14 of 14