

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

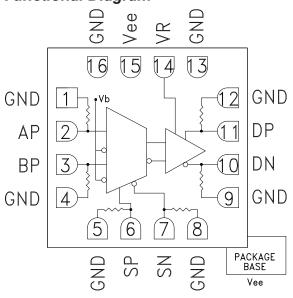
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


13 Gbps, 2:1 SELECTOR w/ PROGRAMMABLE OUTPUT VOLTAGE

Typical Applications

The HMC678LC3C is ideal for:

- 2:1 Multiplexer up to 13 Gbps
- RF ATE Applications
- Broadband Test & Measurement
- Serial Data Transmission up to 13 Gbps
- · Redundant Path Switching
- Built-in Test

Functional Diagram

Features

Supports High Data Rates: up to 13 Gbps

Single-ended inputs

Differential & Single-ended outputs

Fast Rise and Fall Times: 19 / 18 ps

Low Power Consumption: 250 mW typ.

Programmable Differential

Output Voltage Swing: 600 - 1200 mV

Propagation Delay: 125 ps

Single Supply: -3.3V

16 Lead Ceramic 3x3mm SMT Package: 9mm²

General Description

The HMC678LC3C is a 2:1 Selector designed to support data transmission rates of up to 13 Gbps, and selector port operation of up to 13 GHz. The selector routes one of the two single-ended inputs to the differential output upon assertion of the proper select port. The HMC678LC3C also features an output level control pin, VR, which allows for loss compensation or for signal level optimization.

All single-ended input signals to the HMC678LC3C are terminated with 50 Ohms to ground on-chip, and may be either AC or DC coupled. The outputs of the HMC678LC3C may be operated either differentially or single-ended. Outputs can be connected directly to a 50 Ohm terminated system, while DC blocking capacitors may be used if the terminating system is 50 Ohms to a non-ground DC voltage. The HMC678LC3C operates from a single -3.3V DC supply and is available in a ceramic RoHS compliant 3x3 mm SMT package.

Electrical Specifications, $T_A = +25$ °C, Vee = -3.3V

Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage		-3.6	-3.3	-3.0	V
Power Supply Current			76		mA
Maximum Data Rate			13		Gbps
Maximum Select Rate			13		GHz
Maximum Serial Transmission Rate			26		Gbps
Input High Voltage		-0.2		0.5	V
Input Low Voltage		-1.5		-0.4	V
Input Return Loss	Frequency <13 GHz		10		dB
Outros A and literal	Single-Ended, peak-to-peak		550		mVp-p
Output Amplitude	Differential, peak-to-peak		1100		mVp-p
Output High Voltage			-10		mV

HMC678* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

• HMC678LC3C Evaluation Board

DOCUMENTATION

Data Sheet

• HMC678 Data Sheet

REFERENCE MATERIALS -

Quality Documentation

- Package/Assembly Qualification Test Report: LC3, LC3B, LC3C (QTR: 2014-00376 REV: 01)
- Semiconductor Qualification Test Report: BiCMOS-C (QTR: 2013-00241)

DESIGN RESOURCES 🖵

- HMC678 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC678 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

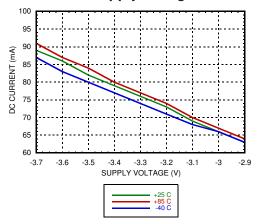
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

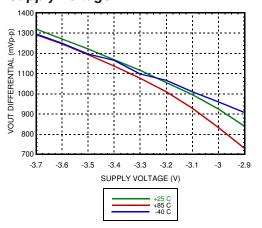
DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

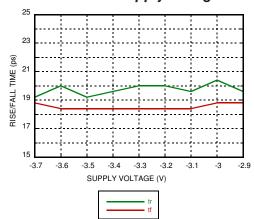
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

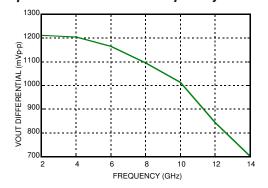

13 Gbps, 2:1 SELECTOR w/ PROGRAMMABLE OUTPUT VOLTAGE

Electrical Specifications (continued)


Parameter	Conditions	Min.	Тур.	Max	Units
Output Low Voltage			-570		mV
Output Rise / Fall Time	Differential, 20% - 80%		19 / 18		ps
Output Return Loss	Frequency <13 GHz		10		dB
Random Jitter, Jr	rms ^[1]			0.2	ps rms
Deterministic Jitter, Jd	peak-to-peak, 2 ¹⁵ -1 PRBS input [2]		2		ps, p-p
Propagation Delay, A or B to D _{OUT} , td			125		ps
Propagation Delay Select to Data, tds			135		ps
Set Up & Hold Time, t _{SH}			6		ps

^[1] Upper limit of random jitter, Jr, determined by measuring and integrating output phase noise with a sinusodal input at 5, 10, and 13.5 GHz over temperature


DC Current vs. Supply Voltage [1] [2]


Output Differential vs. Supply Voltage [1] [2]

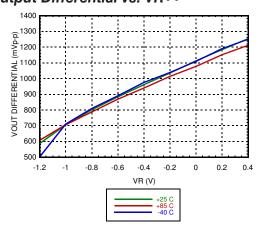
Rise / Fall Time vs. Supply Voltage [1] [2]

Output Differential vs. Frequency

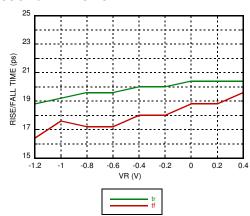
[1] VR = 0.0V

[2] Frequency = 13 GHz

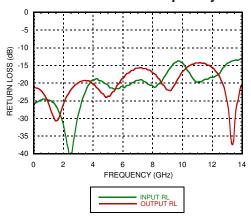
2


^[2] Deterministic jitter calculated by simultaneously measuring the jitter of a 200 mV, 12.5 GHz, 215-1 PRBS input, and a single-ended output

ANALOGDEVICES

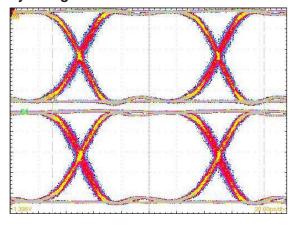

v06.0514

13 Gbps, 2:1 SELECTOR w/ PROGRAMMABLE OUTPUT VOLTAGE

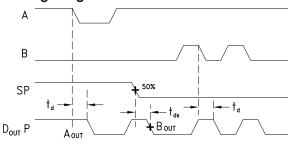

Output Differential vs. VR [2]

Rise / Fall Time vs. VR [2]

Return Loss vs. Frequency


HIGH SPEED DIGITAL LOGIC - SMT

13 Gbps, 2:1 SELECTOR w/ PROGRAMMABLE OUTPUT VOLTAGE


Eye Diagram

[1] Test Conditions:

Waveform generated with an Agilent N4903A J-Bert. Rate = 10 GHz Eye Diagram data presented on a Tektronix CSA 8000

Timing Diagram

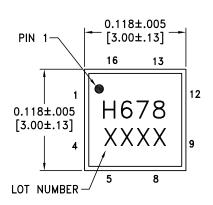
td = propagation delay, A or B to Dout tds = propagation delay, Select to Dout

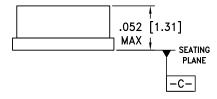
Truth Table

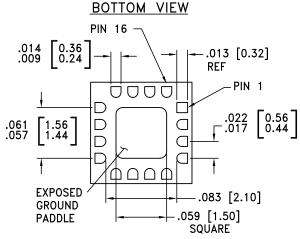
Inputs	Outputs		
SP	SN	DP	
L	Н	A -> D	
Н	L	B -> D	
H = Positive voltage level L = Negative voltage level			
Notes:			

D = DP - DN

S = SP - SN


13 Gbps, 2:1 SELECTOR w/ PROGRAMMABLE OUTPUT VOLTAGE


Absolute Maximum Ratings


Power Supply Voltage (Vee)	-3.75V to +0.5V	
Input Signals	-2V to +0.5V	
Output Signals	-1.5V to +1V	
Storage Temperature	-65°C to +150°C	
Operating Temperature	-40°C to +85°C	
ESD Sensitivity (HBM)	Class 1C	

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING:
- 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. GROUND PADDLE MUST BE SOLDERED TO Vee.

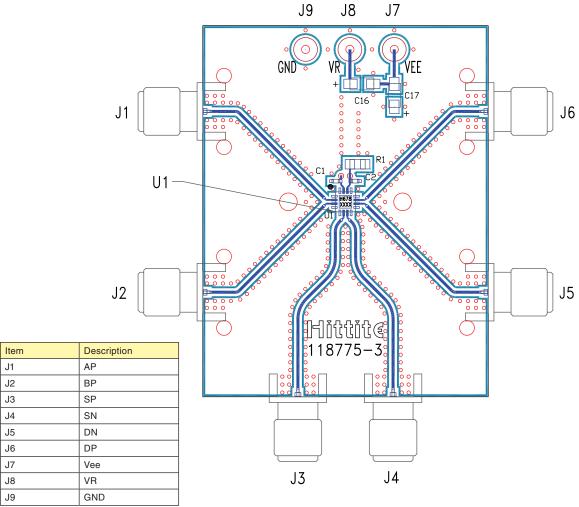
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC678LC3C	Alumina, White	Gold over Nickel	MSL3 [1]	H678 XXXX

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX

13 Gbps, 2:1 SELECTOR w/ PROGRAMMABLE OUTPUT VOLTAGE


Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9, 12	GND	Signal Grounds	GND =
2, 3	AP, BP	Data Inputs	GND 500 AP BP
6, 7	SP, SN	Select Inputs	GND 500 SP SN
10, 11	DN, DP	Data Outputs	GND 500) DP DN
13, 16	GND	Supply Ground	GND =
14	VR	Output level control. Output level may be adjusted by either applying a voltage to VR per "Output Differential vs. VR" plot, or by tying VR to GND with a resistor per the following equation: $V_0(R) = 1.2 / (2.1 + R)$, R in k Ω	VR
15, Package Base	Vee	Negative Supply	

13 Gbps, 2:1 SELECTOR w/ PROGRAMMABLE OUTPUT VOLTAGE

Evaluation PCB

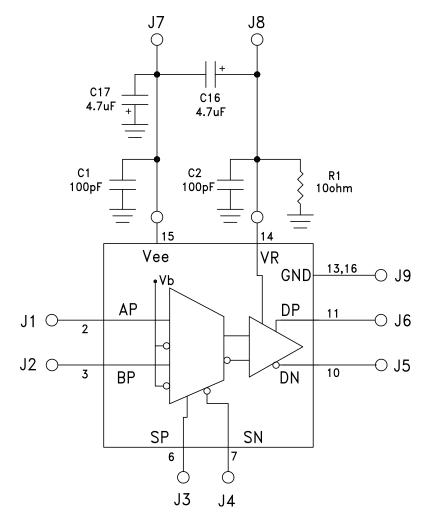
List of Materials for Evaluation PCB 118777 [1]

Item	Description	
J1 - J6	PCB Mount SMA RF Connectors	
J7 - J9	DC Pin	
C1 - C2	100 pF Capacitor, 0402 Pkg.	
C16 - C17	4.7 μF Capacitor, Tantalum	
R1	10 Ohm Resistor, 0603 Pkg.	
U1	HMC678LC3C High Speed Logic, 2:1 Selector	
PCB [2]	118775 Evaluation Board	

[1] Reference this number when ordering complete evaluation $\ensuremath{\mathsf{PCB}}$

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed package base should be connected to Vee. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.


HIGH SPEED DIGITAL LOGIC - SMT

13 Gbps, 2:1 SELECTOR w/ PROGRAMMABLE OUTPUT VOLTAGE

Application Circuit

