

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

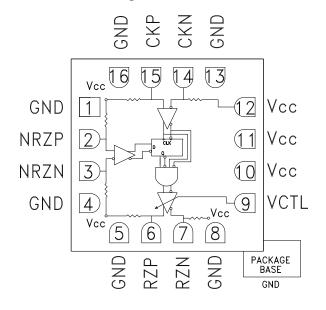
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


13 Gbps, NRZ-to-RZ CONVERTER +3.3V SUPPLY

Typical Applications

The HMC706LC3C is ideal for:

- NRZ-to-RZ data type conversion
- SONET OC-192 applications and equipment
- Mach-Zehnder optical modulator drivers
- Broadband test & measurement

Functional Diagram

Features

Supports high data rates: up to 13 Gbps Differential & single-ended operation Fast rise and fall times: 15/13 ps

Low power consumption: 594 mW typ.

Programmable differential output voltage swing:

300 mV - 1200 mV

Propagation delay: 275 ps Single supply: +3.3V

16 lead ceramic 3 x 3 mm SMT package: 9 mm²

General Description

The HMC706LC3C is a NRZ-to-RZ converter designed to support data transmission rates of up to 13 Gbps, and clock frequencies as high as 13 GHz. During normal operation, RZ data is transferred to the outputs on the positive edge of the clock. Reversing the clock inputs allows for negative-edge triggered applications. All input signals to the HMC706LC3C are terminated with 50 Ω to Vcc on-chip, and may be either AC or DC coupled.

The differential outputs of the HMC706LC3C may be either AC or DC coupled. Outputs can be connected directly to a 50 Ω Vcc terminated system, while DC blocking capacitors may be used if the terminating system is 50 Ω to a non-Vcc DC voltage. The 50 Ω termination resistors are bypassed on chip from Vcc to ground. The HMC706LC3C operates from a single +3.3V DC supply and is available in a ceramic RoHS compliant 3 x 3 mm SMT package.

Electrical Specifications, $T_A = +25$ °C, Vcc = +3.3V

Parameter	Conditions	Min.	Тур.	Max	Units
Power supply voltage		3.0	3.3	3.6	٧
Power supply current			180		mA
Maximum data rate			13		Gbps
Maximum clock rate			13		GHz
Input high voltage		Vcc -0.5		Vcc +0.5	V
Input low voltage		Vcc -1.1		Vcc	V
Input return loss	Frequency <13 GHz		12		dB
	Single-ended, peak-to-peak	50		1200	mVp-p
Input amplitude	Differential, peak-to-peak	100		2000	mVp-p
Adjustable output amplitude	Single-Ended, peak-to-peak	150		600	mVp-p
	Differential, peak-to-peak	300		1200	mVp-p
Output high voltage			3.28		٧

HMC706* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

· HMC706LC3C Evaluation Board

DOCUMENTATION

Data Sheet

• HMC706 Data Sheet

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: LC3, LC3B, LC3C (QTR: 2014-00376 REV: 01)
- Semiconductor Qualification Test Report: BiCMOS-C (QTR: 2013-00241)

Technical Articles

• A New 13 Gbps/13 GHz +3.3V High Speed Logic Family

DESIGN RESOURCES 🖵

- HMC706 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC706 EngineerZone Discussions.

SAMPLE AND BUY 🖵

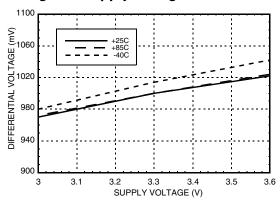
Visit the product page to see pricing options.

TECHNICAL SUPPORT

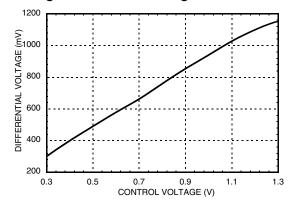
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

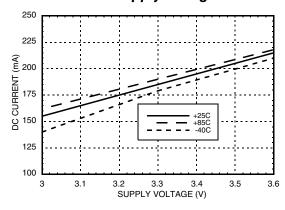
Submit feedback for this data sheet.

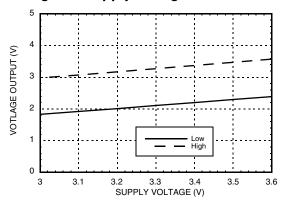

13 Gbps, NRZ-to-RZ CONVERTER +3.3V SUPPLY

Electrical Specifications, (continued)


Parameter	Conditions	Min.	Тур.	Max	Units
Output low voltage			2.76		V
Output rise/fall time	Differential, 20% - 80%		15/13		ps
Output return loss	Frequency <13 GHz		13.5		dB
Random jitter, jr	rms ^[1]			0.2	ps rms
Deterministic jitter, jd	peak-to-peak, 2 ³¹ -1 PRBS input [2]		2		ps, p-p
Propagation delay clock to data, td			275		ps
Clock phase margin	13 GHz		270		deg

^[1] Measured at 12.5 Gbps continuous 1010.... input pattern.


Differential Output Voltage vs. Supply Voltage [1]


Differential Output Voltage vs. Control Voltage

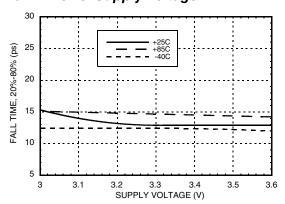
DC Current vs. Supply Voltage [1]

Output Low Voltage, Output High Voltage vs. Supply Voltage [1] [2]

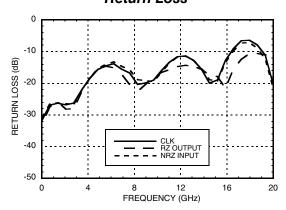
[1] Vctl = 1.1V

[2] Frequency = 13 GHz

^[2] Deterministic jitter calculated by simultaneously measuring the edge by edge variation of the output data stream with respect to the input clock.

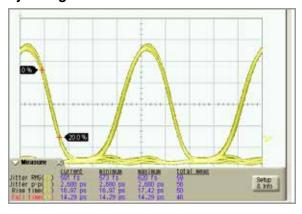


13 Gbps, NRZ-to-RZ CONVERTER +3.3V SUPPLY


Rise Time vs. Supply Voltage [1] [2]

Fall Time vs. Supply Voltage [1] [2]

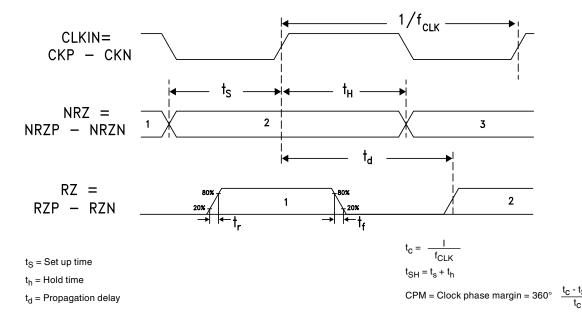
Return Loss


[1] Vctl = 1.1V

13 Gbps, NRZ-to-RZ CONVERTER +3.3V SUPPLY

Eye Diagram [1]

[1] Test Conditions:


Eye diagram data presented on an Infinium DCA 86100A

Rate = 10.0 GB/s

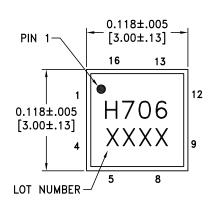
Pseudo random code = 2³¹ -1

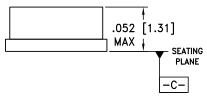
Vin = 400 mVp-p differential

Timing Diagram

Truth Table

Input		Outputs
D	С	Q
L	L -> H	L
Н	L -> H	Н
Х	H -> L	L
Notes: D = DP - DN C = CP - CN Q = QP - QN	H - Negative voltage level L - Positive voltage level	


13 Gbps, NRZ-to-RZ CONVERTER +3.3V SUPPLY


Absolute Maximum Ratings

Power supplyvoltage (Vcc)	-0.5V to +3.6V
Input signals	Vcc - 2V to Vcc + 0.5V
Output signals	Vcc -1.5V to Vcc +1.0V
Storage temperature	-65 °C to +150 °C
Operating temperature	-40 °C to +85 °C
ESD sensitivity level (HBM)	Class 0 (>100V)

Outline Drawing

BOTTOM VIEW **PIN 16** .013 [0.32] REF PIN 1 ס ס ס \Box \Box **EXPOSED -.083 [2.10] GROUND** .059 [1.50] **PADDLE** SQUARE

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- LEAD AND GROUND PADDLE PLATING:
 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- ${\tt 4.\,LEAD\,\, SPACING\,\, TOLERANCE\,\, IS\,\, NON-CUMULATIVE.}$
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM -C-6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. GROUND PADDLE MUST BE SOLDERED TO GND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC706LC3C	Alumina, white	Gold over nickel	MSL3 ^[1]	H706 XXXX

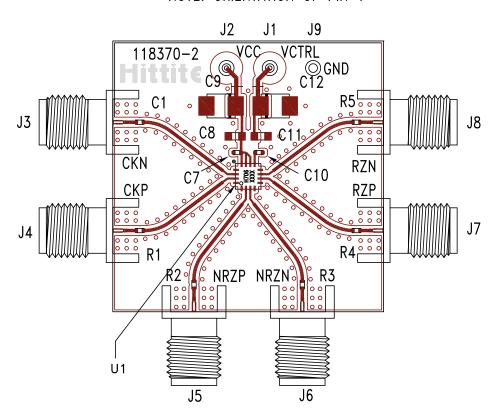
^[1] Max peak reflow temperature of 260 $^{\circ}\text{C}$

^{[2] 4-}digit lot number XXXX

13 Gbps, NRZ-to-RZ CONVERTER +3.3V SUPPLY

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 13, 16 Ground paddle	GND	Signal & supply ground	♥Vcc GND =
2, 3	NRZP, NRZN	NRZ data inputs	NRZP NRZN
6, 7	RZP, RZN	RZ data outputs	Vcc 50 o RZN RZP
9	Vctl	Output level control	Vcc 5K VctIO 1K
10 - 12	Vcc	Positive supply	Vcc GND
14, 15	CKN, CKP	Clock inputs	Vcc 50 o



13 Gbps, NRZ-to-RZ CONVERTER +3.3V SUPPLY

Evaluation PCB

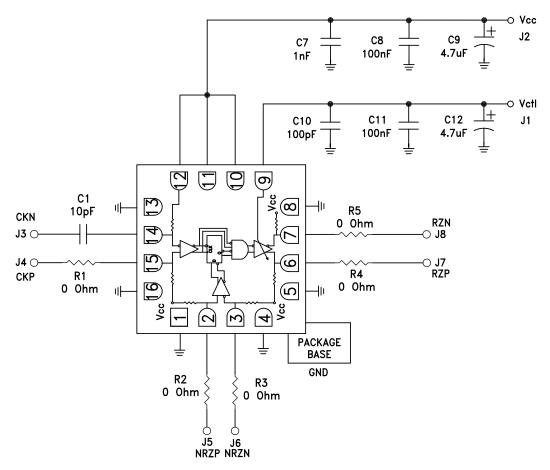
NOTE: ORIENTATION OF PIN 1

List of Materials for Evaluation PCB 118372 [1]

Item	Description
J1, J2, J9	DC pin
J3 - J8	K connector
C1	10 pF capacitor, 0402 pkg.
C7	1 nF capacitor, 0402 pkg.
C8, C11	100 nF capacitor, 0603 pkg.
C9, C12	4.7 μF Case A, Tantalum
C10	100 pF capacitor, 0402 pkg.
R1 - R5	0 Ω resistor, 0402 pkg.
U1	HMC706LC3C High speed logic, NRZ to RZ converter
PCB [2]	118370 evaluation board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit board material: Arlon 25FR, FR4


The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ω impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed package base should be connected to ground. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

13 Gbps, NRZ-to-RZ CONVERTER +3.3V SUPPLY

Application Circuit

