

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

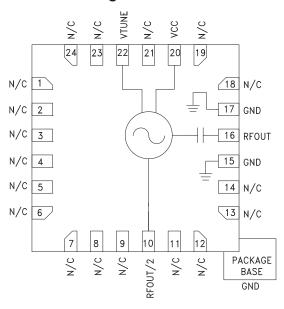
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC736LP4 / 736LP4E

v01.0209


MMIC VCO w/ HALF FREQUENCY OUTPUT 14.5 - 15.0 GHz

Typical Applications

The HMC736LP4(E) is ideal for:

- Point to Point/Multipoint Radio
- Test Equipment & Industrial Controls
- SATCOM
- Military End-Use

Functional Diagram

Features

Dual Output: Fo = 14.5 - 15.0 GHzFo/2 = 7.25 - 7.5 GHz

Pout: +9 dBm

Phase Noise: -105 dBc/Hz @ 100 kHz

No External Resonator Needed

24 Lead 4x4mm SMT Package: 16mm²

General Description

The HMC736LP4(E) is a GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCO. The HMC736LP4(E) integrates a resonator, negative resistance device, varactor diode and feature half frequency output. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +9 dBm typical from a +4.2V supply voltage. The voltage controlled oscillator is packaged in a leadless QFN 4x4 mm surface mount package, and requires no external matching components.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc = +4.2V

Parameter		Min.	Тур.	Max.	Units
Frequency Range	Fo Fo/2		14.5 - 15.0 7.25 - 7.5		GHz GHz
Power Output	RFOUT/2	6 -8	9 -3	13 2	dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RFOUT			-105		dBc/Hz
Tune Voltage	Vtune	1		13	V
Supply Current		120	150	180	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			2.5		dB
Harmonics/Subharmonics	1/2 3/2		-45 -42		dBc dBc
Pulling (into a 2.0:1 VSWR)			12		MHz pp
Pushing @ Vtune= 5V			24		MHz/V
Frequency Drift Rate			1.2		MHz/°C

HMC736* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC736LP4 Evaluation Board

DOCUMENTATION

Data Sheet

• HMC736 Data Sheet

REFERENCE MATERIALS -

Quality Documentation

- Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES 🖵

- HMC736 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC736 EngineerZone Discussions.

SAMPLE AND BUY 🖵

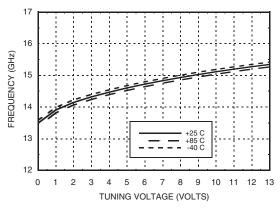
Visit the product page to see pricing options.

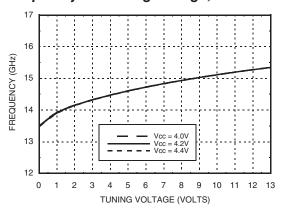
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

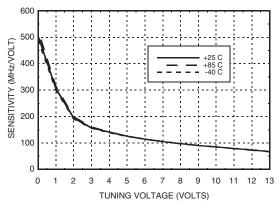
DOCUMENT FEEDBACK 🖳

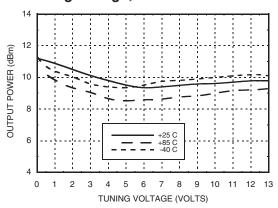
Submit feedback for this data sheet.

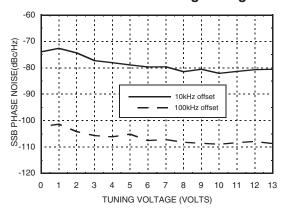

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

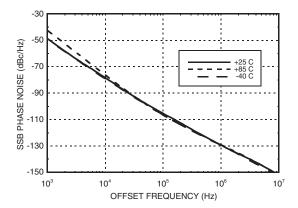


MMIC VCO w/ HALF FREQUENCY OUTPUT 14.5 - 15.0 GHz


Frequency vs. Tuning Voltage, Vcc = +4.2V

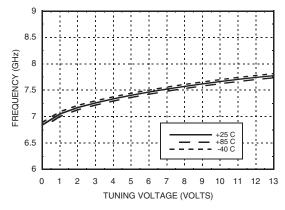

Frequency vs. Tuning Voltage, T= 25°C

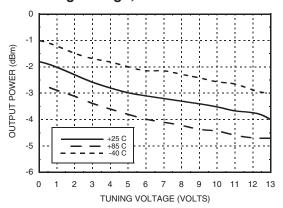

Sensitivity vs. Tuning Voltage, Vcc = +4.2V


Output Power vs. Tuning Voltage, Vcc = +4.2V

SSB Phase Noise vs. Tuning Voltage

SSB Phase Noise @ Vtune = +5V





MMIC VCO w/ HALF FREQUENCY OUTPUT 14.5 - 15.0 GHz

RFOUT/2 Frequency vs. Tuning Voltage, Vcc = +4.2V

RFOUT/2 Output Power vs. Tuning Voltage, Vcc = +4.2V

Absolute Maximum Ratings

Vcc	+5.5V
Vtune	0 to 15V
Junction Temperature	135 °C
Continuous Pdiss (T=85 °C) (derate 19.6 mW/C above 85 °C	1 W
Thermal Resistance (junction to ground paddle)	51 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

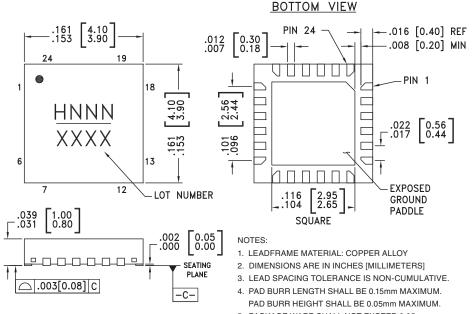
Typical Supply Current vs. Vcc

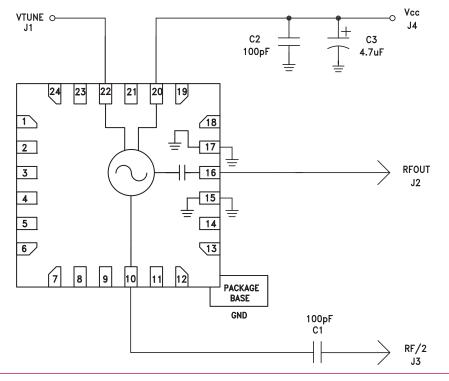
Vcc (V)	Icc (mA)	
4.0	140	
4.2	150	
4.4	160	

Note: VCO will operate over full voltage range shown above.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC736LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H736 XXXX
HMC736LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H736 XXXX


- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX


MMIC VCO w/ HALF FREQUENCY OUTPUT 14.5 - 15.0 GHz

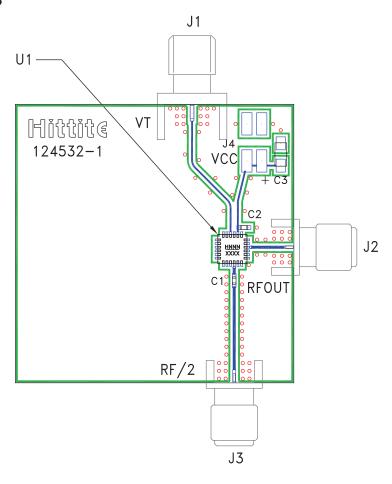
Outline Drawing

- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Application Circuit

MMIC VCO w/ HALF FREQUENCY OUTPUT 14.5 - 15.0 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1 - 9, 11 - 14, 18, 19, 21, 23, 24	N/C	No Connection. These pins may be connected to RF/DC ground. Performance will not be affected.	
10	RFOUT/2	Half frequency output (AC coupled). Requires external AC coupling capacitor.	RFOUT/2
16	RFOUT	RF output (AC coupled).	RFOUT
20	Vcc	Supply Voltage, +4.2V	Vcc O48pF
22	VTUNE	Control voltage and modulation input. Modulation bandwidth dependent on drive source impedance. See "Determining the FM Bandwidth of a Wideband Varactor Tuned VCO" application note.	VTUNEO
15, 17, Paddle	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	GND

MMIC VCO w/ HALF FREQUENCY OUTPUT 14.5 - 15.0 GHz

Evaluation PCB

List of Materials for Evaluation PCB 123987 [1]

Item	Description	
J1 - J3	PCB Mount SMA RF Connector	
J4	2 mm DC Header	
C1, C2	100 pF Capacitor, 0402 Pkg.	
C3	4.7 μF Tantalum Capacitor	
U1	HMC736LP4(E) VCO	
PCB [2]	124532 Eval Board	

^[1] Reference this number when ordering complete evaluation PCB $\,$

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR or Rogers 4350