imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

v02.0309 MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Typical Applications

The HMC738LP4(E) is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios / LMDS
- VSAT

Features

Pout: +9 dBm Phase Noise: -95 dBc/Hz @ 100 kHz Typ. No External Resonator Needed 24 Lead 4x4mm SMT Package: 16mm²

Functional Diagram (RF) VTUNE N/C N/C N/C N/C Vcc 23 21 19 24 22 20 1 N/C (18 N/C 17 RFOUT/16 2 ÷8 GND N/C 3 16 RFOUT Vcc (DIG) 4 15 GND RF/2 N/C 5 14 N/C N/C 6 13 N/C 10 11 12 8 9 7 N/C N/C GND N/C PACKAGE N/C RFOUT/2 BASE

General Description

The HMC738LP4(E) is a GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC VCO. The HMC738LP4(E) integrates a resonator, negative resistance device, varactor diode and divide-by-16 prescaler. The VCO's phase noise performance is excellent over temperature, shock, and process due to the oscillator's monolithic structure. Power output is +9 dBm typical from a 5V supply voltage. The voltage controlled oscillator is packaged in a low cost leadless QFN 4x4 mm surface mount package

Electrical Specifications, $T_A = +25^{\circ} C$, Vcc (RF), Vcc (DIG) = +5V

GND

Parameter		Min.	Тур.	Max.	Units
Frequency Range	Fo Fo/2		20.9 - 23.9		GHz
Power Output	RF OUT RF OUT/2 RF OUT/16	3 -3.5 -7		15 +3.5 -1	dBm dBm
SSB Phase Noise @ 100 kHz Offset, Vtune= +5V @ RF Output			-95		dBc/Hz
Tune Voltage	Vtune	1		13	V
Supply Current	Icc (RF), Icc (DIG)	160	200	220	mA
Tune Port Leakage Current (Vtune= 13V)				10	μA
Output Return Loss			3		dB
Harmonics/Subharmonics	1/2 3/2		-23 -40		dBc dBc
Pulling (into a 2.0:1 VSWR)			22		MHz pp
Pushing @ Vtune= 5V			-90		MHz/V
Frequency Drift Rate			3.5		MHz/°C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC738* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

HMC738LP4 Evaluation Board

DOCUMENTATION

Data Sheet

• HMC738 Data Sheet

REFERENCE MATERIALS

Quality Documentation

- Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES

- HMC738 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC738 EngineerZone Discussions.

SAMPLE AND BUY

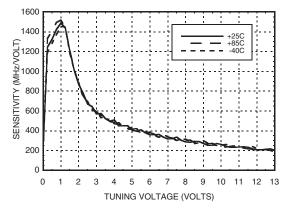
Visit the product page to see pricing options.

TECHNICAL SUPPORT

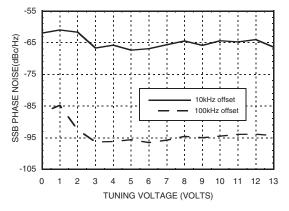
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

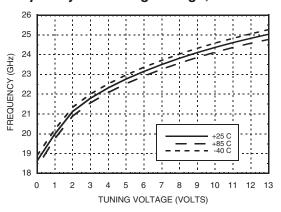
Submit feedback for this data sheet.

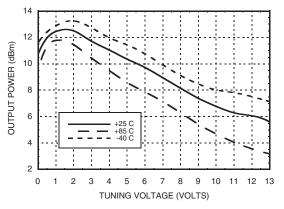

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

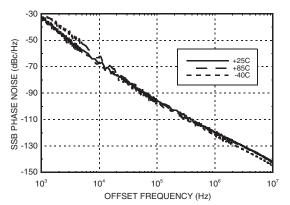
26 25 24 FREQUENCY (GHz) 23 22 21 20 Vcc= 4.75V Vcc= 5.0V Vcc= 5.25V 19 18 10 11 12 13 0 2 3 4 5 6 9 1 7 8 TUNING VOLTAGE (VOLTS)


Frequency vs. Tuning Voltage, T= 25°C

v02.0309


Sensitivity vs. Tuning Voltage, Vcc= +5V

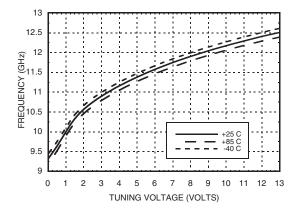

SSB Phase Noise vs. Tuning Voltage

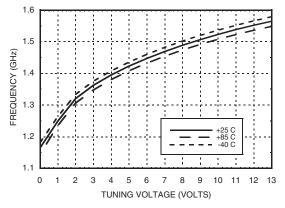

Frequency vs. Tuning Voltage, Vcc= +5V

Output Power vs. Tuning Voltage, Vcc= +5V

SSB Phase Noise @ Vtune= 5V

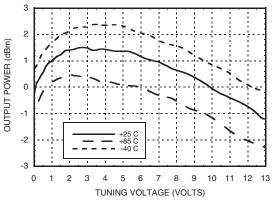
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

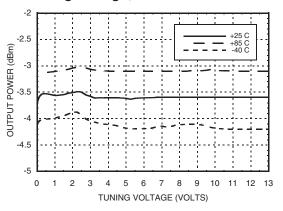



v02.0309

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

RFOUT/2 Frequency vs. Tuning Voltage, Vcc= +5V


Divide-by-16 Frequency vs. Tuning Voltage, Vcc= +5V


Absolute Maximum Ratings

Vcc (RF), Vcc (DIG)	+5.5V
Vtune	0 to +15V
Junction Temperature	135° C
Continuous Pdiss (T= 85 °C) (derate 23 mW/° above 85 °C)	1.2 W
Thermal Resistance (junction to ground paddle)	43 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

RFOUT/2 Output Power Power vs. Tuning Voltage, Vcc= +5V

Divide-by-16 Output Power vs. Tuning Voltage, Vcc= +5V

Typical Supply Current vs. Vcc

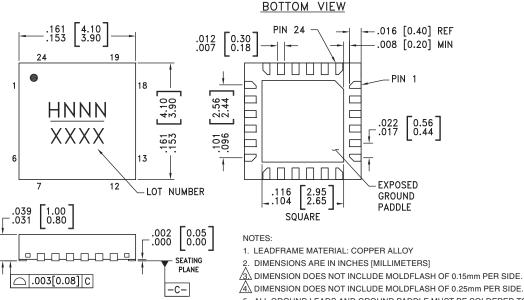
Vcc (V)	Icc (mA)
4.75	175
5.0	200
5.25	220

Note: VCO will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

VCOS WITH FO/2 OUTPUT - SMT

8


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Outline Drawing

v02.0309

 ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC738LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H738 XXXX
HMC738LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H738</u> XXXX

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

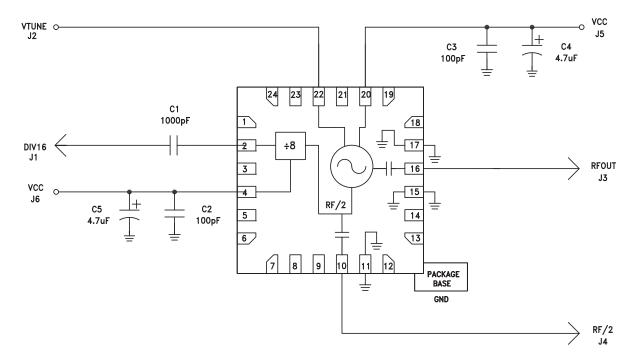
[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 5, 6, 7, 8, 9, 12, 13, 14, 18, 19, 21, 23, 24	N/C	No Connection required. These pins may be connected to RF/DC ground without affecting performance.	
2	RFOUT/16	RF/16 Divided Output. Requires DC Block.	SV ORFOUT/16
4	Vcc (DIG)	Supply voltage for prescaler. Can be omitted if prescaler is not needed to conserve approximately 100 mA.	Vcco (DIG)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

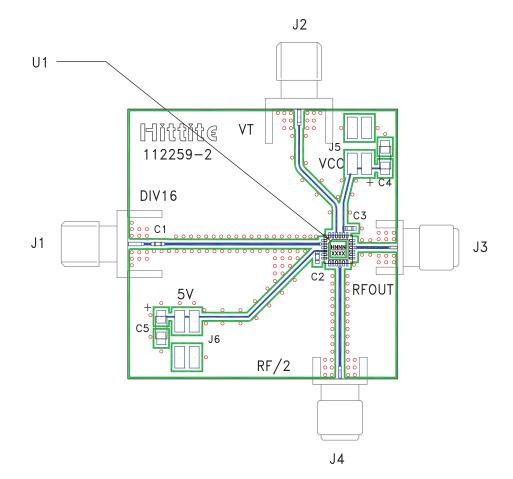

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Pin Descriptions (Continued)

v02.0309

Pin Number	Function	Description	Interface Schematic
10	RFOUT/2	Half frequency output (AC coupled)	
11, 15, 17	GND	Package bottom has an exposed metal paddle that must be RF & DC grounded.	
16	RFOUT	RF output (AC coupled).	
20	Vcc (RF)	Supply Voltage	VccO (RF) = 34pF
22	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	1.5nH 2500 VTUNEO 4.0pF 4.0pF 4.0pF 4.0pF 4.0pF

Typical Application Circuit


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ROHS V

MMIC VCO w/ HALF FREQUENCY OUTPUT & DIVIDE-BY-16, 20.9 - 23.9 GHz

Evaluation PCB

v02.0309

List of Materials for Evaluation PCB 112261 [1]

Item	Description	
J1, J2	PCB Mount SMA RF Connector	
J3	PCB Mount K-Connector	
J4	PCB Mount SRI SMA Connector	
J5 - J6	2 mm SMT 8 Pin Molex Header	
C1	1,000 pF Capacitor, 0402 Pkg.	
C2, C3	100 pF Capacitor, 0402 Pkg.	
C4, C5	4.7 µF Tantalum Capacitor	
U1	HMC738LP4(E)	
PCB [2]	112259 Eval Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.