

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

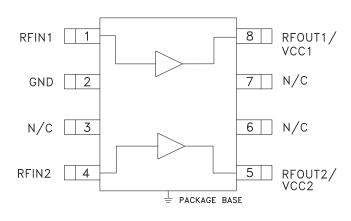











# GaAs HBT HIGH LINEARITY PUSH-PULL AMPLIFIER, 75 Ohm, DC - 1 GHz

#### Typical Applications

The HMC754S8GE is ideal for:

- CATV / Broadband Infrastructure
- Test & Measurement Equipment
- Line Amps and Fiber Nodes
- Customer Premise Equipment

#### **Functional Diagram**



#### **Features**

Output IP2: +78 dBm High Gain: 14.5 dB

High Output IP3: +38 dBm

75 Ohm Impedance

Single Positive Supply: +5V Robust 1000V ESD, Class 1C

SOIC-8 SMT Package

#### **General Description**

The HMC754S8GE is a GaAs/InGaP HBT Dual Channel Gain Block MMIC SMT amplifier covering DC to 1 GHz. This versatile product contains two gain blocks, packaged in a single 8 lead plastic SOIC-8, for use with both amplifiers combined in push-pull configuration using external baluns to cancel out second order non-linearities and improve IP2 performance. In this configuration, the HMC754S8GE offers high gain, very low distortion & simple external matching. This high linearity amplifier consumes only 160mA from a single positive supply.

## Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc1 = Vcc2 = 5V, Zo = 75 Ohm [1]

| Parameter                                                                         |                                                    | Min.                 | Тур.                 | Max. | Units          |
|-----------------------------------------------------------------------------------|----------------------------------------------------|----------------------|----------------------|------|----------------|
| Gain                                                                              | 0.05 - 0.5 GHz<br>0.5 - 0.87 GHz<br>0.87 - 1.0 GHz | 13.5<br>12.7<br>12.1 | 14.7<br>14.2<br>13.4 |      | dB<br>dB<br>dB |
| Gain Variation Over Temperature                                                   | 0.05 - 0.87 GHz                                    |                      | 0.008                |      | dB/ °C         |
| Input Return Loss                                                                 | 0.05 - 0.5 GHz<br>0.5 - 0.87 GHz                   |                      | 17<br>10             |      | dB<br>dB       |
| Output Return Loss                                                                | 0.05 - 0.5 GHz<br>0.5 - 0.87 GHz                   |                      | 10<br>20             |      | dB<br>dB       |
| Reverse Isolation                                                                 | 0.05 - 0.87 GHz                                    |                      | 23                   |      | dB             |
| Output Power for 1 dB Compression (P1dB)                                          | 0.05 - 0.87 GHz                                    | 19.5                 | 21                   |      | dBm            |
| Output Third Order Intercept Point (IP3)<br>(Pout= 0 dBm per tone, 1 MHz spacing) | 0.05 - 0.87 GHz                                    |                      | 38                   |      | dBm            |
| Output Second Order Intercept Point (IP2)                                         | 0.05 - 0.5 GHz                                     |                      | 78                   |      | dBm            |
| Composite Second Order (CSO) [2]                                                  | 0.05 - 0.87 GHz                                    |                      | -81                  |      | dBc            |
| Composite Triple Beat (CTB) [2]                                                   | 0.05 - 0.87 GHz                                    |                      | -75                  |      | dBc            |
| Cross Modulation (XMOD) [2]                                                       | 0.05 - 0.87 GHz                                    |                      | -67                  |      | dBc            |
| Noise Figure                                                                      | 0.05 - 0.5 GHz<br>0.05 - 0.87 GHz                  |                      | 5.5<br>6.5           |      | dB<br>dB       |
| Supply Current (lcc1 + lcc2)                                                      |                                                    | 145                  | 160                  | 175  | mA             |

<sup>[1]</sup> Data taken with dual amplifiers combined in push-pull (default) configuration

<sup>[2]</sup> Input level +15 dBmV, 133 channels - with analog modulation

# **HMC754\* PRODUCT PAGE QUICK LINKS**

Last Content Update: 02/23/2017

# COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

#### **EVALUATION KITS**

HMC754S8GE Evaluation Board

#### **DOCUMENTATION**

#### **Application Notes**

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

#### **Data Sheet**

· HMC754 Data Sheet

### REFERENCE MATERIALS 🖳

#### **Quality Documentation**

- HMC Legacy PCN: S## and S##E packages Relocation of pre-existing production equipment to new building
- Package/Assembly Qualification Test Report: Plastic Encapsulated SOIC (QTR: 02018 REV: 01)
- Semiconductor Qualification Test Report: GaAs HBT-E (QTR: 2013-00271)

## **DESIGN RESOURCES**

- HMC754 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

#### **DISCUSSIONS**

View all HMC754 EngineerZone Discussions.

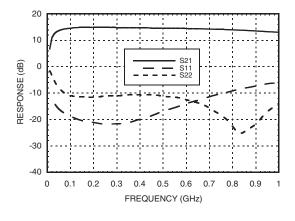
#### SAMPLE AND BUY 🖳

Visit the product page to see pricing options.

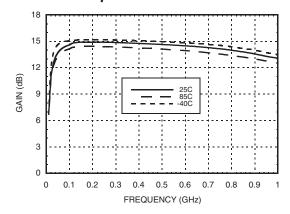
## **TECHNICAL SUPPORT**

Submit a technical question or find your regional support number.

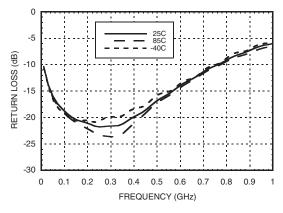
#### DOCUMENT FEEDBACK 🖳


Submit feedback for this data sheet.

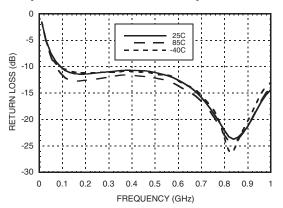




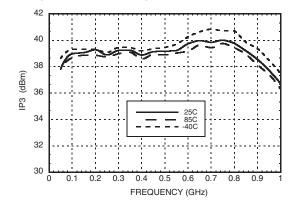

# GaAs HBT HIGH LINEARITY PUSH-PULL AMPLIFIER, 75 Ohm, DC - 1 GHz


#### Gain & Return Loss

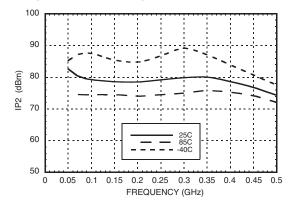



#### Gain vs. Temperature




#### Input Return Loss vs. Temperature



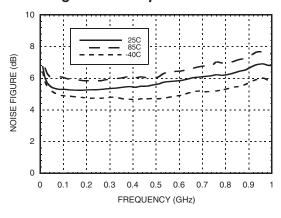

#### **Output Return Loss vs. Temperature**



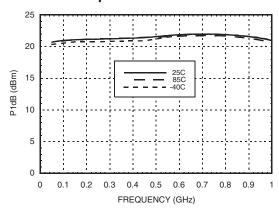
#### Output IP3 vs. Temperature



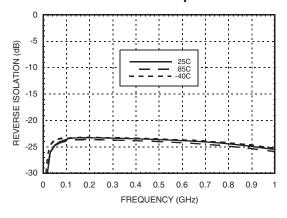
#### Output IP2 vs. Temperature



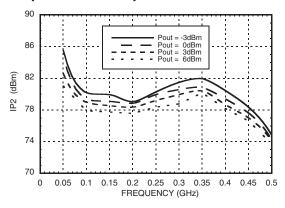


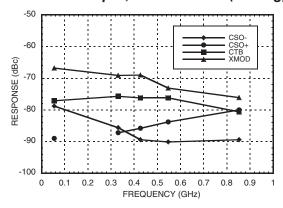

# GaAs HBT HIGH LINEARITY PUSH-PULL AMPLIFIER, 75 Ohm, DC - 1 GHz


#### Noise Figure vs. Temperature




#### P1dB vs. Temperature




#### Reverse Isolation vs. Temperature

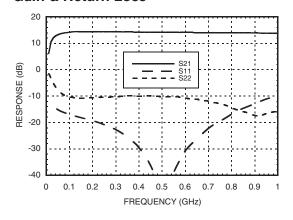


#### **Output IP2 vs. Output Power**

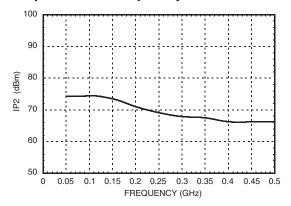


#### CSO / CTB / XMOD @ +15 dBmV input, 133 channels (Analog)

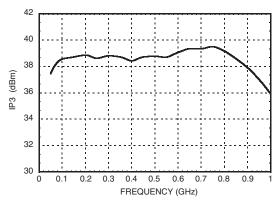




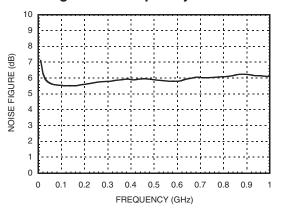




# GaAs HBT HIGH LINEARITY PUSH-PULL AMPLIFIER, 75 Ohm, DC - 1 GHz

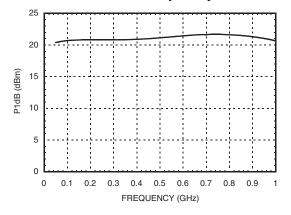
Option 1 - Improved Input Return Loss & Gain Flatness (with Lower IP2) Application


#### **Gain & Return Loss**




#### **Output IP2 vs. Frequency**




#### Output IP3 vs. Frequency

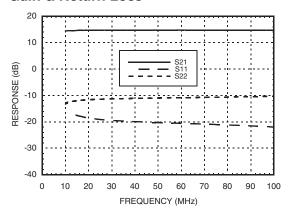


#### Noise Figure vs. Frequency

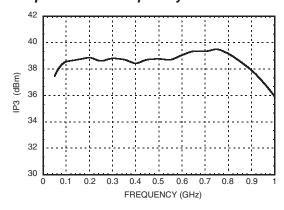


#### P1dB vs. Frequency

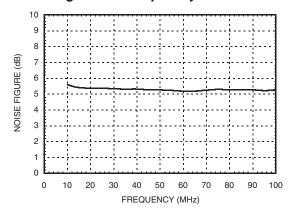




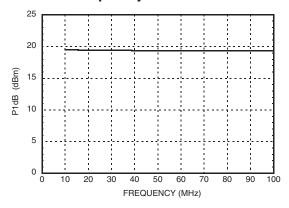




# GaAs HBT HIGH LINEARITY PUSH-PULL AMPLIFIER, 75 Ohm, DC - 1 GHz

#### Option 2 - 10 to 100 MHz Application


#### Gain & Return Loss




#### Output IP3 vs. Frequency



#### Noise Figure vs. Frequency

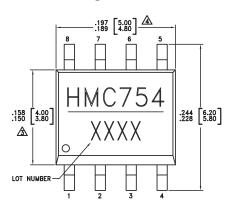


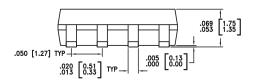
#### P1dB vs. Frequency

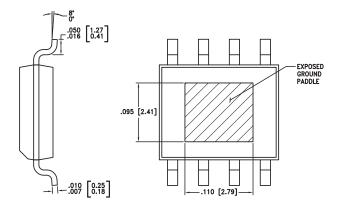







# GaAs HBT HIGH LINEARITY PUSH-PULL AMPLIFIER, 75 Ohm, DC - 1 GHz


#### **Absolute Maximum Ratings**


| Collector Bias Voltage (Vcc)                                     | +5.5 Vdc       |
|------------------------------------------------------------------|----------------|
| RF Input Power (RFIN)                                            | +10 dBm        |
| Junction Temperature                                             | 150 °C         |
| Continuous Pdiss (T = 85 °C)<br>(derate 18.69 mW/°C above 85 °C) | 1.21 W         |
| Thermal Resistance (junction to ground paddle)                   | 53.5 °C/W      |
| Storage Temperature                                              | -65 to +150 °C |
| Operating Temperature                                            | -40 to +85 °C  |
| ESD Sensitivity (HBM)                                            | Class 1C       |



#### **Outline Drawing**







#### NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

#### Package Information

| Part Number | Package Body Material                              | Lead Finish   | MSL Rating | Package Marking [3] |
|-------------|----------------------------------------------------|---------------|------------|---------------------|
| HMC754S8GE  | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2]   | HMC754<br>XXXX      |

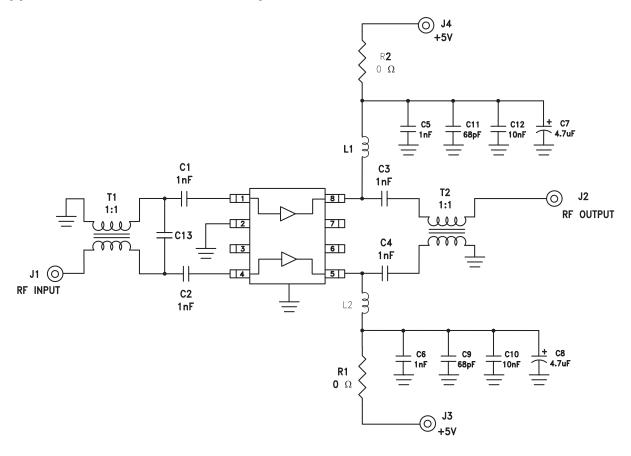
- [1] Max peak reflow temperature of 235  $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX





# GaAs HBT HIGH LINEARITY PUSH-PULL AMPLIFIER, 75 Ohm, DC - 1 GHz

#### **Pin Descriptions**


| Pin Number | Function                    | Description                                                                                 | Interface Schematic |
|------------|-----------------------------|---------------------------------------------------------------------------------------------|---------------------|
| 1, 4       | RFIN1, RFIN2                | These pins are DC coupled. An off chip DC block capacitor is required.                      | RFOUT1,2            |
| 5, 8       | RFOUT1/VCC1,<br>RFOUT2/VCC2 | RF Output and DC bias for the output stage.                                                 |                     |
| 2          | GND                         | These pins and package bottom must be connected to RF/DC ground.                            | ○ GND<br>=          |
| 3, 6, 7    | N/C                         | No connection. These pins may be connected to RF ground.  Performance will not be affected. |                     |





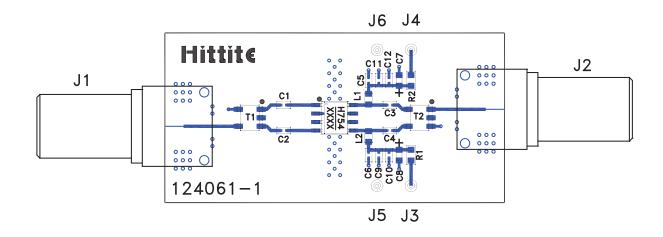
# GaAs HBT HIGH LINEARITY PUSH-PULL AMPLIFIER, 75 Ohm, DC - 1 GHz

#### **Application Circuit for Push-Pull Operation**



#### **Components for Selected Options**

| Tune Options          | Standard   | Option 1   | Option 2    |
|-----------------------|------------|------------|-------------|
| Evaluation PCB Number | 124063     | 126311     | 124825      |
| T1 [1]                | ETC 1-1-13 | MABACT0039 | ETC1-1T-5TR |
| T2 [1]                | ETC 1-1-13 | ETC 1-1-13 | ETC1-1T-5TR |
| L1, L2                | 180 nH     | 180 nH     | 10 uH       |
| C13                   | Open       | 1.1 pF     | Open        |


[1] 1:1 Transformer





# GaAs HBT HIGH LINEARITY PUSH-PULL AMPLIFIER, 75 Ohm, DC - 1 GHz

#### **Evaluation PCB - Standard and Option 2 Application**



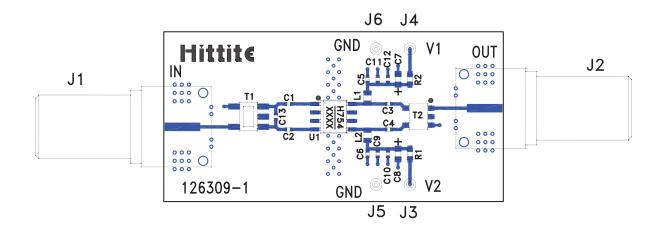
#### List of Materials for Evaluation PCB [1]

| Item                  | Description                           |
|-----------------------|---------------------------------------|
| J1, J2                | F-Connector                           |
| J3 - J6               | DC PIN                                |
| C1 - C6               | 1 nF Capacitor, 0402 Pkg.             |
| C7, C8                | 4.7 μF Capacitor, Tantalum, 0603 Pkg. |
| C9, C11               | 68 pF Capacitor, 0402 Pkg.            |
| C10, C12              | 10 nF Capacitor, 0402 Pkg.            |
| L1, L2 <sup>[2]</sup> | Inductor, 0603 Pkg.                   |
| R1, R2                | 0 Ohm Resistor, 0603 Pkg.             |
| T1, T2 <sup>[2]</sup> | 1:1 Transformer                       |
| U1                    | HMC754S8GE Amplifier                  |
| PCB [3]               | 124061 Evaluation PCB                 |

<sup>[1]</sup> When requesting an evaluation board, please reference the appropriate evaluation PCB number listed in the table "Components for Selected Options."

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 75 ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

<sup>[2]</sup> Please refer to "Components for Selected Options" table for values


<sup>[3]</sup> Circuit Board Material: Rogers 4350 or Arlon 25FR





# GaAs HBT HIGH LINEARITY PUSH-PULL AMPLIFIER, 75 Ohm, DC - 1 GHz

#### **Evaluation PCB - Option 1 Application**



#### List of Materials for Evaluation PCB [1]

| Item                  | Description                           |
|-----------------------|---------------------------------------|
| J1, J2                | F-Connector                           |
| J3 - J6               | DC PIN                                |
| C1 - C6               | 1 nF Capacitor, 0402 Pkg.             |
| C7, C8                | 4.7 μF Capacitor, Tantalum, 0603 Pkg. |
| C9, C11               | 68 pF Capacitor, 0402 Pkg.            |
| C10, C12              | 10 nF Capacitor, 0402 Pkg.            |
| C13                   | 1.1 pF Capacitor, 0402 Pkg.           |
| L1, L2                | 180 nH Inductor, 0603 Pkg.            |
| R1, R2                | 0 Ohm Resistor, 0603 Pkg.             |
| T1, T2 <sup>[2]</sup> | 1:1 Transformer                       |
| U1                    | HMC754S8GE Amplifier                  |
| PCB [3]               | 126309 Evaluation PCB                 |

<sup>[1]</sup> When requesting an evaluation board, please reference the appropriate evaluation PCB number listed in the table "Components for Selected Options."

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 75 ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

<sup>[2]</sup> Please refer to "Components for Selected Options" table for values

<sup>[3]</sup> Circuit Board Material: Rogers 4350 or Arlon 25FR