

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

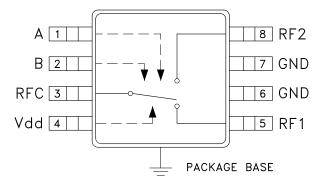
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HMC784AMS8GE

v01.0117


GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

Typical Applications

The HMC784AMS8GE is ideal for:

- Cellular/4G Infrastructure
- WiMAX, WiBro & Fixed Wireless
- Automotive Telematics
- Mobile Radio
- Test Equipment

Functional Diagram

Features

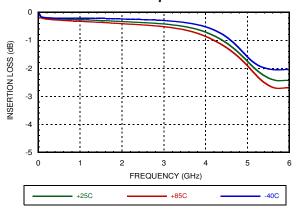
Input P1dB: +40 dBm @ Vdd = +8V High Third Order Intercept: +60 dBm

Positive Control: +3 to +8 V Low Insertion Loss: 0.3 dB MSOP8G Package: 14.8 mm²

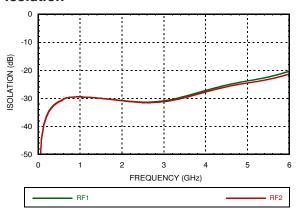
General Description

The HMC784AMS8GE is a high power SPDT switch in an 8-lead MSOPG package for use in transmit-receive applications which require very low distortion at high input signal power levels. The device can control signals from DC to 4 GHz. The design provides exceptional intermodulation performance; > +60 dBm third order intercept at +5V bias. RF1 and RF2 are reflective shorts when "OFF". On-chip circuitry allows single positive supply operation from +3 Vdc to +8 Vdc at very low DC current with control inputs compatible with CMOS logic families.

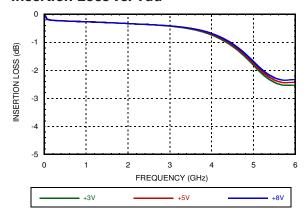
Electrical Specifications,

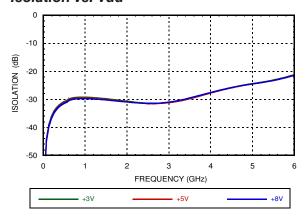

 $T_A = +25^{\circ}$ C, VctI = 0/Vdd, Vdd = +5V (Unless Otherwise Stated), 50 Ohm System

Paramete	er	Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz DC - 4.0 GHz		0.3 0.3 0.4 0.4 0.7	0.6 0.8 0.9 1.0 1.5	dB dB dB dB dB
Isolation		DC - 4.0 GHz	24	28		dB
Return Loss (On State)	DC - 1.0 GHz DC - 2.0 GHz DC - 3.0 GHz DC - 4.0 GHz			30 26 20 14		dB dB dB dB
Input Power for 0.1dB Compression	Vdd = +3V Vdd = +5V Vdd = +8V	1.0 - 4.0 GHz		31 36 38		dBm dBm dBm
Input Power for 1dB Compression	Vdd = +3V Vdd = +5V Vdd = +8V	0.1 - 4.0 GHz	32 35 38	33 38 40		dBm dBm dBm
Input Third Order Intercept (Two-tone input power = +27 dBm each tone)	0.02 - 0.1 GHz 0.1 - 2.0 GHz 0.1 - 3.0 GHz 0.1 - 4.0 GHz			61 62 61 60		dBm dBm dBm dBm
Switching Characteristics						
	tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)	DC - 4.0 GHz		82 112		ns ns

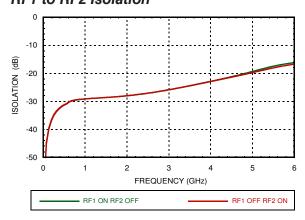


GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

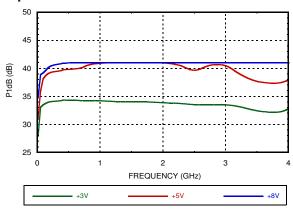

Insertion Loss vs. Temperature

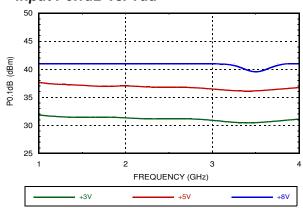

Isolation

Insertion Loss vs. Vdd

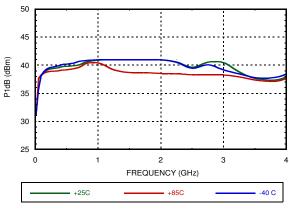

Isolation vs. Vdd

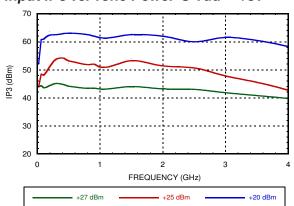
Return Loss

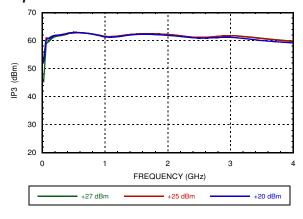

RF1 to RF2 Isolation

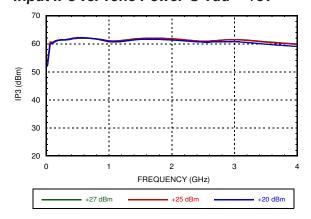


GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

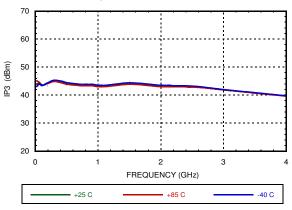

Input P1dB vs. Vdd

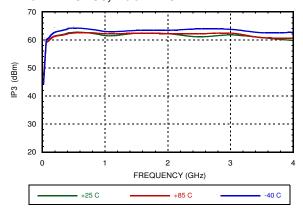

Input P0.1dB vs. Vdd


Input P1dB vs. Temperature @ Vdd = +5V

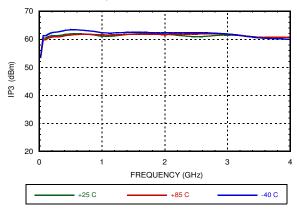

Input IP3 vs. Tone Power @ Vdd = +3V

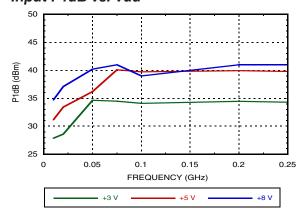
Input IP3 vs. Tone Power @ Vdd = +5V

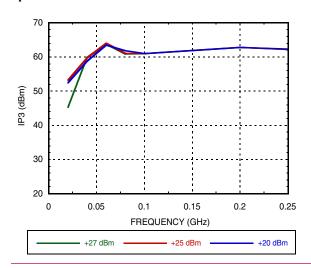

Input IP3 vs. Tone Power @ Vdd = +8V



GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz


Input IP3 vs. Temperature 27 dBm Tones, Vdd = +3V


Input IP3 vs. Temperature 27 dBm Tones, Vdd = +5V


Input IP3 vs. Temperature 27 dBm Tones, Vdd = +8V

Input P1dB vs. Vdd

Input IP3 vs. Tone Power @ Vdd = +5V

GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

Bias Voltage & Current

Vdd (V)	Typical Idd (μA)	
+3	0.5	
+5	2	
+8	20	

Control Voltages & Currents

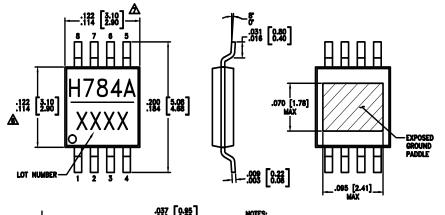
State	Vdd = +3V (μA)	Vdd = +5V (μA)	Vdd = +8V (μA)
Low (0 to +0.2V)	0.5	2.0	20
High (Vdd ±0.2V)	0.1	0.1	0.1

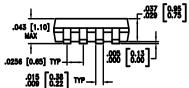
Truth Table

Control Ir	put (Vctl)	Signal Path State		
А	В	RFC to RF1 RFC to RF2		
High	Low	Off	On	
Low	High	On	Off	

Absolute Maximum Ratings

RF Input Power (Vdd = +8V, 50 Ohm source & load impedances)	+39 dBm (T = +85 °C)
Supply Voltage Range (Vdd) (Vctl = 0V)	-0.2 to +9V
Control Voltage Range (A & B)	-0.2 to Vdd +0.5V
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 25 mW/°C above 85 °C)	1.217 W
Thermal Resistance (Channel to ground paddle)	53.4 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Rating	Class 1A HBM


Note: DC blocking capacitors are required at ports RFC, RF1 and RF2. Their value will determine the lowest transmission frequency.



GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

Outline Drawing

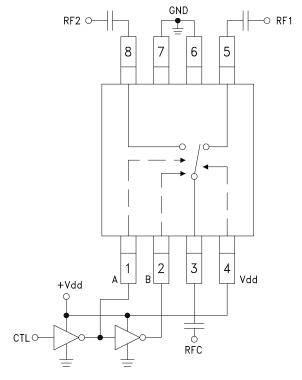
- 1. PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC. SILICA AND SILICON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY
- 3. LEAD AND GROUND PADDLE PLATING: 100% MATTE TIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 5. CHARACTERS TO BE HELVETICA MEDIUM, .030 HIGH, LASER OR WHITE INK, LOCATED APPROXIMATELY AS SHOWN.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- TO DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]
HMC784AMS8GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H784A XXXX

^{[1] 4-}Digit lot number XXXX

^[2] Max peak reflow temperature of 260 $^{\circ}\text{C}$

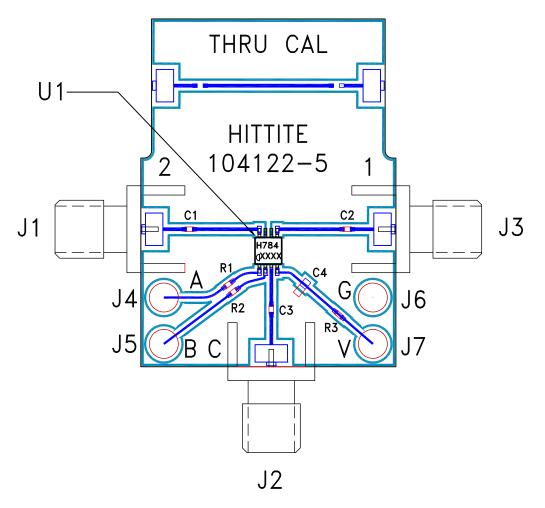


GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	А	See truth table and control voltage table.	ABO-E
2	В	See truth table and control voltage table.	±
3, 5, 8	RFC, RF1, RF2	This pin is DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
4	Vdd	Supply Voltage	
6, 7	GND	Package bottom must also be connected to PCB RF ground.	O GND

Typical Application Circuit


Notes:

- 1. Set logic gate and switch Vdd:
 - For Vdd = +3V to +7V, use HCT series logic to provide a TTL driver interface.
 - For Vdd = +3V to +8V, use NXP Hex Inverter, HEF 4069UB or similar.
- 2. Control inputs A/B can be driven directly with CMOS logic with Vdd of +3 to +8 Volts applied to the CMOS logic gates and to pin 4 of the RF switch.
- 3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
- 4. Highest RF signal power capability is achieved with V set to +8V. The switch will operate properly (but at lower RF power capability) at bias voltages down to +3V.

GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

Evaluation Circuit Board

List of Materials for Evaluation EV1HMC784AMS8G [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J7	DC Pin
C1 - C3	100 pF capacitor, 0402 Pkg.
C4	10 KpF capacitor, 0603 Pkg.
R1 - R3	100 Ohm Resistor, 0402 Pkg.
U1	HMC784AMS8GE T/R Switch
PCB [2]	104122 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Analog Devices Inc. upon request.