

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz

Typical Applications

The HMC788ALP2E is ideal for:

- Cellular/3G & LTE/WiMAX/4G
- LO Driver Applications
- Microwave Radio
- Test & Measurement Equipment
- UWB Communications

Functional Diagram

Features

P1dB Output Power: +20 dBm

Output IP3: +33 dBm

Gain: 14 dB 50 Ohm I/O's

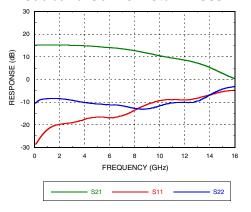
6 Lead 2x2 mm DFN SMT Package: 4 mm2

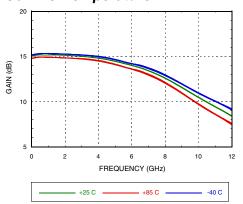
General Description

The HMC788ALP2E is a GaAs pHEMT Gain Block MMIC SMT DC to 10 GHz amplifier. This 2x2 mm DFN packaged amplifier can be used as either a cascadable 50 Ohm gain stage or to drive the LO port of many of HIttite's single and double-balanced mixers with up to +20 dBm output power. The HMC788ALP2E offers 14 dB of gain and an output IP3 of +33 dBm while requiring only 76 mA from a +5V supply. The Darlington feedback pair exhibits reduced sensitivity to normal process variations and yields excellent gain stability over temperature while requiring a minimal number of external bias components.

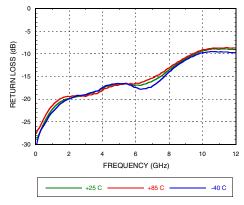
Electrical Specifications, Vcc = 5V, $T_A = +25^{\circ} C$

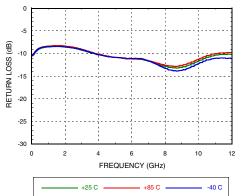
Parameter		Min.	Тур.	Max.	Units
Gain	DC - 6.0 GHz 6.0 - 10.0 GHz	12 9	14 12		dB dB
Gain Variation Over Temperature	DC - 6.0 GHz 6.0 - 10.0 GHz		0.004 0.007		dB/ °C dB/ °C
Return Loss Input	DC - 6.0 GHz 6.0 - 10.0 GHz		16 9		dB dB
Return Loss Output	DC - 6.0 GHz 6.0 - 10.0 GHz		9 12		dB dB
Reverse Isolation	DC - 6.0 GHz 6.0 - 10 GHz		23 20		dB dB
Output Power for 1 dB Compression (P1dB)	DC - 6.0 GHz 6.0 - 10.0 GHz	18 15	20 18		dBm dBm
Output Third Order Intercept (IP3)	DC - 6.0 GHz 6.0 - 10.0 GHz		33 30		dBm dBm
Noise Figure	DC - 6.0 GHz 6.0 - 10.0 GHz		6 7		dB
Supply Current (Icq)		60	76	90	mA

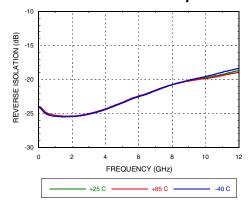

Note: Data taken with broadband bias tee on device output.

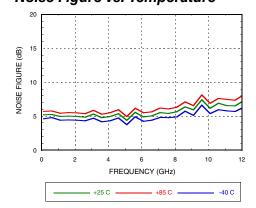


pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz


Broadband Gain & Return Loss

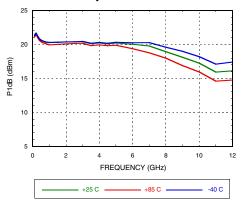

Gain vs. Temperature

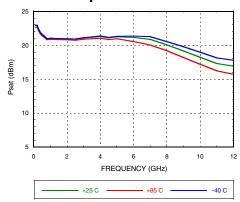

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

Reverse Isolation vs. Temperature

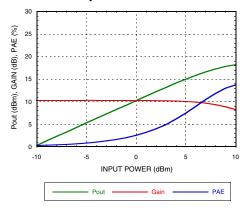
Noise Figure vs. Temperature

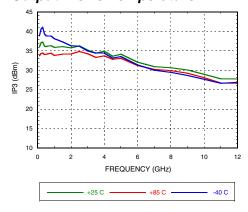


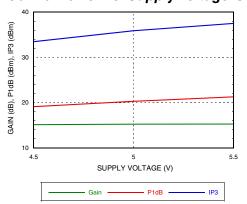


pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz

P1dB vs. Temperature


Psat vs. Temperature


Power Compression @ 1 GHz


Power Compression @ 10 GHz

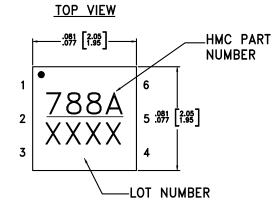
Output IP3 vs. Temperature [1]

Gain & Power vs. Supply Voltage @ 1 GHz

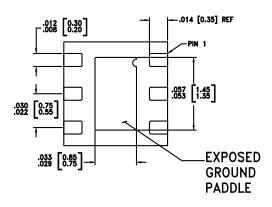
[1] +5 dBm / Tone Output Power

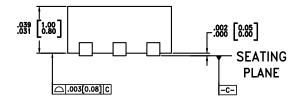
pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz

Absolute Maximum Ratings


Collector Bias Voltage (Vcc)	+7V	
RF Input Power (RFIN)(Vs = +5V)	+15 dBm	
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 8.5 mW/°C above 85 °C)	0.55 W	
Thermal Resistance (junction to ground paddle)	118 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

Typical Supply Current


Vcc (V)	Icq (mA)
4.5	65
5.0	76
5.5	87


Outline Drawing

BOTTOM VIEW

SIDE VIEW

NOTES:

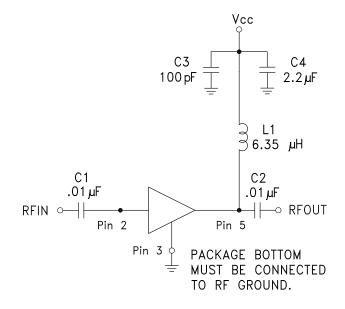
- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]
HMC788ALP2E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>788A</u> XXXX

^{[1] 4-}Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

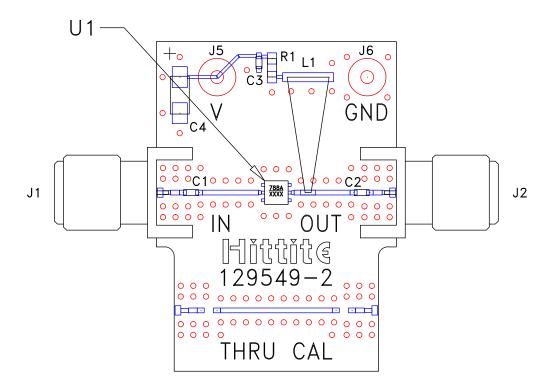


pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 6	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
2	RFIN	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFOUT
5	RFOUT	RF output and DC Bias for the output stage.	RFIN
3	GND	This pin and exposed ground paddle must be connected to RF/DC ground.	GND =

Application Circuit



pHEMT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC788ALP2[1]

Item	Description	
J1 - J2	PC Mount SMA Connector	
J5, J6	DC Pin	
C1, C2	0.01 μF Capacitor, 0502 Pkg.	
C3	100 pF Capacitor, 0402 Pkg.	
C4	2.2 μF Case A Pkg.	
R1	0 Ohm Resistor, 0402 Pkg.	
L1	Inductor, Conical 6.35 µH	
U1	HMC788ALP2E	
PCB [2]	129549 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.