

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

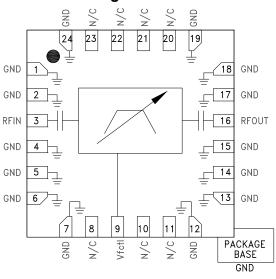
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


FILTER - TUNABLE, BAND PASS SMT 9 - 19 GHz

Typical Applications

The HMC897LP4E is ideal for:

- Test & Measurement Equipment
- Military RADAR & EW/ECM
- SATCOM & Space
- Industrial & Medical Equipment

Functional Diagram

Features

Fast Tuning Response
Excellent Wideband Rejection
Single Chip Replacement
for Mechanically Tuned Designs
24 Lead 4x4 mm SMT Package

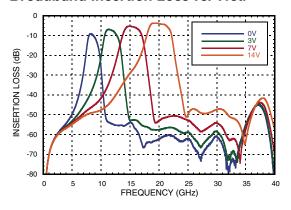
General Description

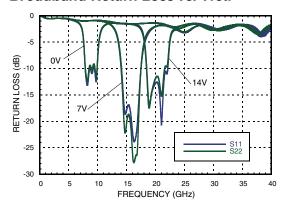
The HMC897LP4E is a MMIC band pass filter which features a user selectable passband frequency. The 3 dB filter bandwidth is approximately 18%. The 20 dB filter bandwidth is approximately 35%. The center frequency can be varied between 9 and 19 GHz by applying an analog tune voltage between 0 and 14V. This tunable filter can be used as a much smaller alternative to physically large switched filter banks and cavity tuned filters. The HMC897LP4E has excellent microphonics due to the monolithic design, and provides a dynamically adjustable solution in advanced communications applications.

Electrical Specifications, $T_A = +25$ °C

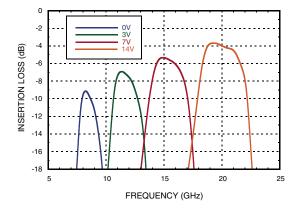
Parameter	Min.	Тур.	Max.	Units
F _{center} Tuning Range	9		19	GHz
3 dB Bandwidth		18		%
Low Side Rejection Frequency (Rejection >20 dB)		0.81 *F _{center}		GHz
High Side Rejection Frequency (Rejection >20 dB)		1.17 *F _{center}		GHz
Low Side Sub-Harmonic Rejection (Rejection >40 dB)		0.58 *F _{center}		GHz
High Side Sub-Harmonic Rejection (Rejection >40 dB)		1.23 *F _{center}		GHz
Re-entry Frequency (Rejection <30 dB)		>40		GHz
Insertion Loss		6.5		dB
Return Loss		9.5		dB
Input IP3 (Pin = 0 to +20 dBm)		30		dBm
Input Power @ 5° Shift In Insertion Phase (Vfctl = 0V)		10		dBm
Input Power @ 5° Shift In Insertion Phase (Vfctl > = 1V)		15		dBm
Frequency Control Voltage (V _{fctl})	0		14	V
Source/Sink Current (I _{fctl})			±1	mA
Residual Phase Noise [1] (100 kHz Offset)		-160		dBc/Hz
F _{center} Drift Rate		-1.65		MHz/°C
Tuning Characteristics ^[2] tFULLBAND (0% Vfctl to 90% RF)		200		ns

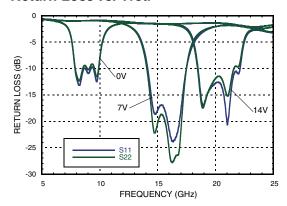
^[1] Optimum residual phase noise performance requires the use of a low noise driver circuit.

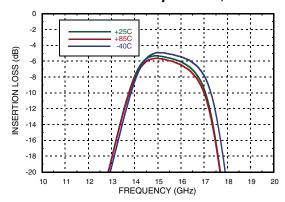

^[2] Tuning speed is dependent on driver circuit. Data measured with a high speed op-amp driver and includes driver slew rate delay.

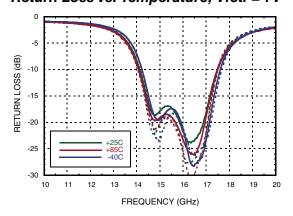


FILTER - TUNABLE, BAND PASS SMT 9 - 19 GHz


Broadband Insertion Loss vs. Vfctl

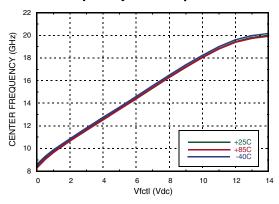

Broadband Return Loss vs. Vfctl

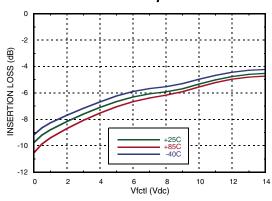

Insertion Loss vs. Vfctl


Return Loss vs. Vfctl

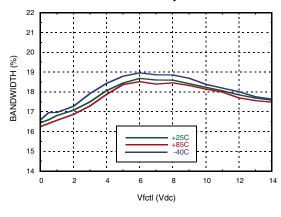
Insertion Loss vs. Temperature, Vfctl = 7V

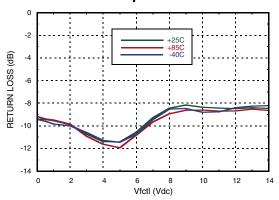
Return Loss vs. Temperature, Vfctl = 7V

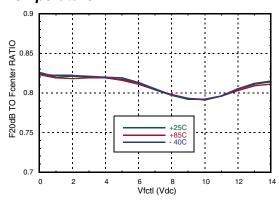


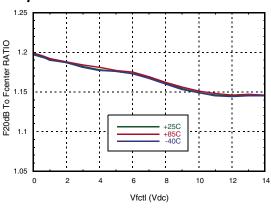


FILTER - TUNABLE, BAND PASS SMT 9 - 19 GHz


Center Frequency vs. Temperature

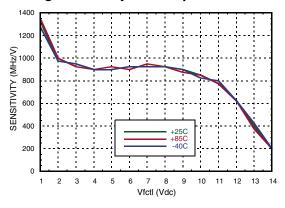

Insertion Loss vs. Temperature

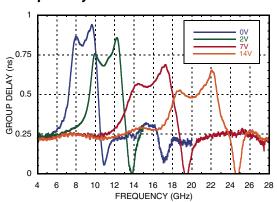

3 dB Bandwidth vs. Temperature


Maximum Return Loss in a 2 dB Bandwidth vs. Temperature

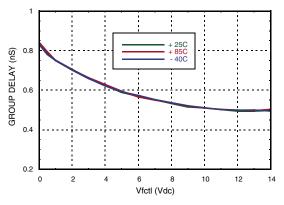
Low Side Rejection Ratio vs. Temperature [1]

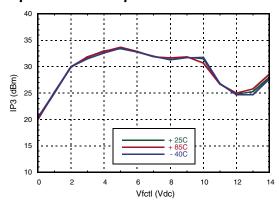
High Side Rejection Ratio vs. Temperature [1]

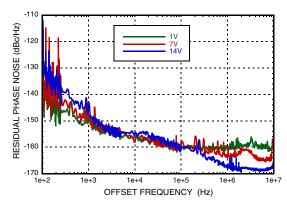

[1] Rejection ratio is defined as the ratio of the frequency at which the relative insertion loss is 20 dB to f center

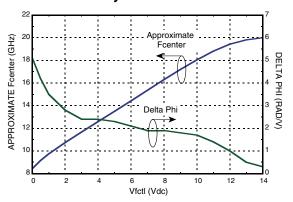


FILTER - TUNABLE, BAND PASS SMT 9 - 19 GHz


Tuning Sensitivity vs. Temperature

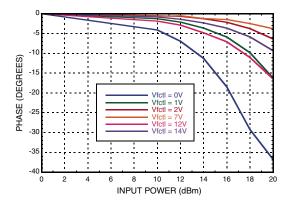

Group Delay

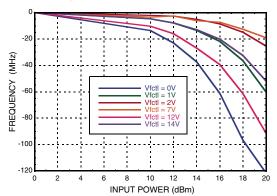

Group Delay vs. Fcenter vs. Temperature


Input IP3 vs. Temperature

Residual Phase Noise

Phase Sensitivity vs. Vfctl





FILTER - TUNABLE, BAND PASS SMT 9 - 19 GHz

Phase Shift vs. Pin

Frequency Shift vs. Pin

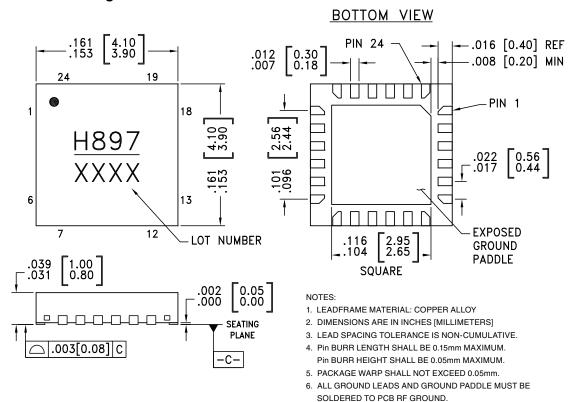
Absolute Maximum Ratings

Frequency Control Voltage (Vfctl)	-0.5 to +15V
RF Power Input 27 dBm	
Storage Temperature -65 to +150 °C	
ESD Sensitivity (HBM)	Class 1A

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Reliability Information

Junction Temperature to Maintain 1 Million Hour MTTF	150 °C	
Nominal Junction Temperature (T= 85 °C and Pin = 27 dBm)	108 °C	
Operating Temperature	-40 to +85 °C	



FILTER - TUNABLE, BAND PASS SMT 9 - 19 GHz

7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED

Outline Drawing

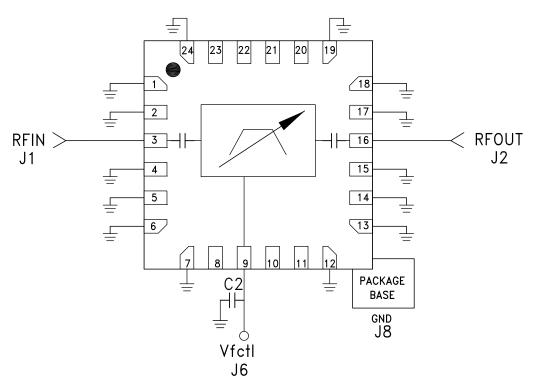
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]
HMC897LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H897 XXXX

LAND PATTERN.

^{[1] 4-}Digit lot number XXXX

^[2] Max peak reflow temperature of 260 °C

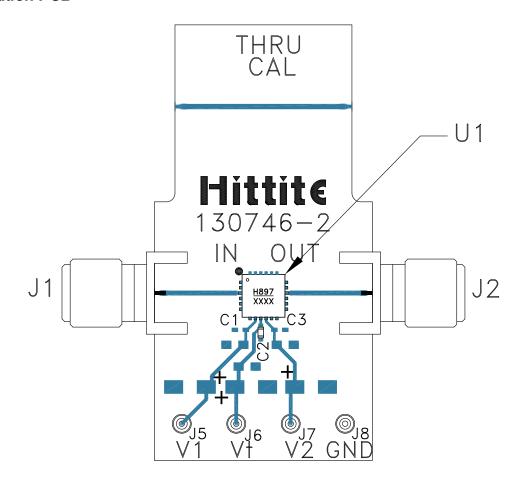


FILTER - TUNABLE, BAND PASS SMT 9 - 19 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
8, 10, 11, 20 - 23	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
1, 2, 4 - 7, 12 - 15, 17 - 19, 24	GND	These pins and exposed paddle must be connected to RF/DC ground.	⊖ GND
3	RFIN	This pin is AC coupled and matched to 50 Ohms.	3.5pF RFIN O— — — —
9	Vfctl	Center frequency control voltage.	Vfctl 4Ω 0.4nH 100Ω
16	RFOUT	This pin is AC coupled and matched to 50 Ohms.	3.5pF RFOUT

Application Circuit



FILTER - TUNABLE, BAND PASS SMT 9 - 19 GHz

Evaluation PCB

List of Materials for Evaluation PCB 131086 [1]

Item	Description	
J1, J2	PCB Mount K-Connector	
J6, J8	DC Pin	
C2	100 pF Capacitor, 0402 Pkg.	
U1	HMC897LP4E Filter - Tunable	
PCB [2]	130746 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB $\,$

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohms impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR or Rogers 25FR