

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

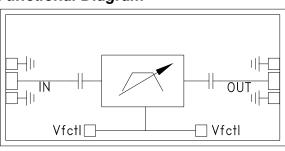
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


FILTER - TUNABLE, BAND PASS 19 - 38 GHz

Typical Applications

The HMC899 is ideal for:

- Test & Measurement Equipment
- Military RADAR & EW/ECM
- SATCOM & Space
- Industrial & Medical Equipment

Functional Diagram

Features

Fast Tuning Response
Excellent Wideband Rejection
Single Chip Replacement

for Mechanically Tuned Designs Small Size: 2.5 x 1.2 x 0.10 mm

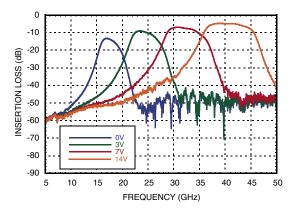
General Description

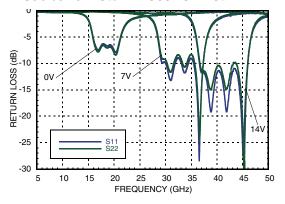
The HMC899 is a MMIC band pass filter which features a user selectable passband frequency. The 3 dB filter bandwidth is approximately 18%. The 20 dB filter bandwidth is approximately 35%. The center frequency can be varied between 19 and 38 GHz by applying an analog tune voltage between 0 and 14V. This tunable filter can be used as a much smaller alternative to physically large switched filter banks and cavity tuned filters. The HMC899 has excellent microphonics due to the monolithic design, and provides a dynamically adjustable solution in advanced communications applications.

Electrical Specifications, T_A = +25 °C

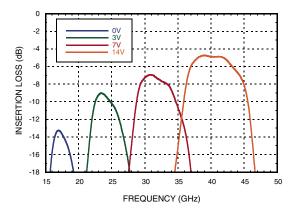
Parameter	Min.	Тур.	Max.	Units
F _{center} Tuning Range	19		38	GHz
3 dB Bandwidth		18		%
Low Side Rejection Frequency (Rejection >20 dB)		0.81 *F _{center}		GHz
High Side Rejection Frequency (Rejection >20 dB)		1.20 *F _{center}		GHz
Low Side Sub-Harmonic Rejection (Rejection >40 dB)		0.54 *F _{center}		GHz
High Side Sub-Harmonic Rejection (Rejection >40 dB)		1.32 *F _{center}		GHz
Re-entry Frequency (Rejection <30 dB)		>50		GHz
Insertion Loss		7		dB
Return Loss		10		dB
Input IP3 (Pin = 0 to +20 dBm)		25		dBm
Input Power @ 5° Shift In Insertion Phase (Vfctl = 0.5V)		14		dBm
Input Power @ 5° Shift In Insertion Phase (Vfctl > = 1V)		16		dBm
Frequency Control Voltage (V _{fctl})	0		14	V
Source/Sink Current (I _{fctl})			±1	mA
Residual Phase Noise [1] (100 kHz Offset)		-157		dBc/Hz
F _{center} Drift Rate		-3.2		MHz/°C
Tuning Speed, Phase Settling to within 10° [2]		< 100		ns

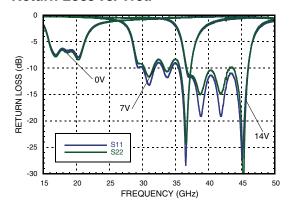
^[1] Optimum residual phase noise performance requires the use of a low noise driver circuit.

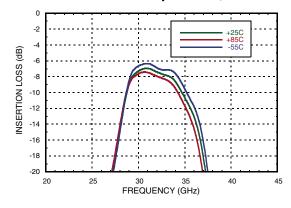

^[2] Tuning speed includes 40 ns tuning voltage ramp from driver.

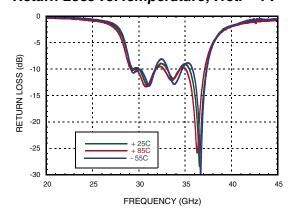


FILTER - TUNABLE, BAND PASS 19 - 38 GHz


Broadband Insertion Loss vs. Vfctl

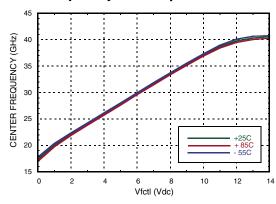

Broadband Return Loss vs. Vfctl

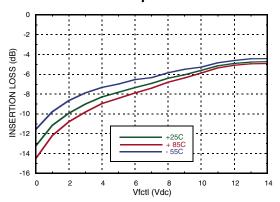

Insertion Loss vs. Vfctl


Return Loss vs. Vfctl

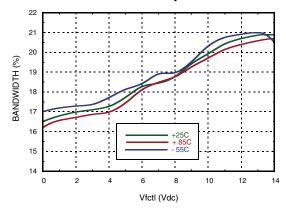
Insertion Loss vs. Temperature, Vfctl = 7V

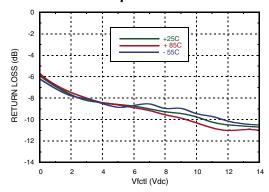
Return Loss vs. Temperature, Vfctl = 7V

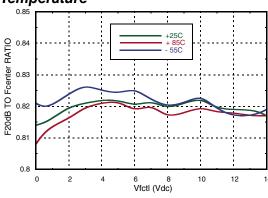


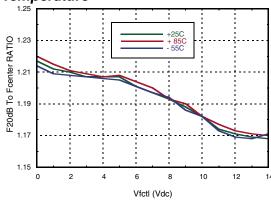


FILTER - TUNABLE, BAND PASS 19 - 38 GHz


Center Frequency vs. Temperature

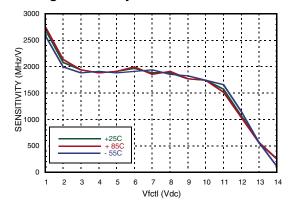

Insertion Loss vs. Temperature


3 dB Bandwidth vs. Temperature

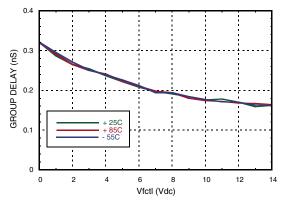

Maximum Return Loss in a 2 dB Bandwidth vs Temperature

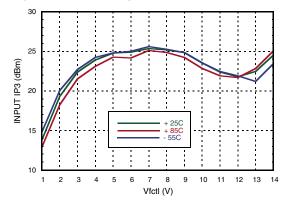
Low Side Rejection Ratio vs. Temperature [1]

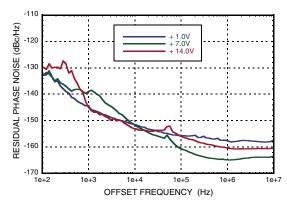
High Side Rejection Ratio vs. Temperature [1]

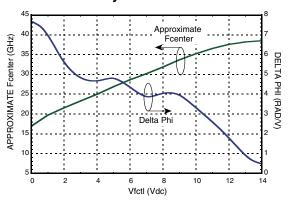

[1] Rejection ratio is defined as the ratio of the frequency at which the relative insertion loss is 20 dB to the insertion loss at fcenter.

FILTER - TUNABLE, BAND PASS 19 - 38 GHz


Tuning Sensitivity vs. Vfctl

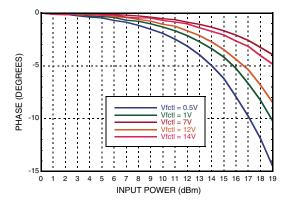

Group Delay vs. Frequency

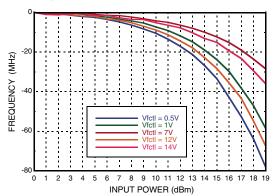

Group Delay vs. Fcenter


Input IP3 vs. Temperature

Residual Phase Noise

Phase Sensitivity vs. Vfctl





FILTER - TUNABLE, BAND PASS 19 - 38 GHz

Phase Shift vs. Pin

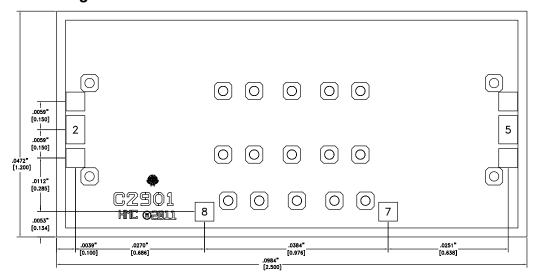
Frequency Shift vs. Pin

Absolute Maximum Ratings

Frequency Control Voltage (Vfctl)	-0.5 to +15V	
RF Power Input	27 dBm	
Storage Temperature	-65 to +150 °C	
ESD Sensitivity (HBM)	Class 1 A	

Reliability Information

Junction Temperature to Maintain 1 Million Hour MTTF	150 °C	
Nominal Junction Temperature (T= 85 °C and Pin = 27 dBm)	103 °C	
Operating Temperature	-55 to +85 °C	



FILTER - TUNABLE, BAND PASS 19 - 38 GHz

Outline Drawing

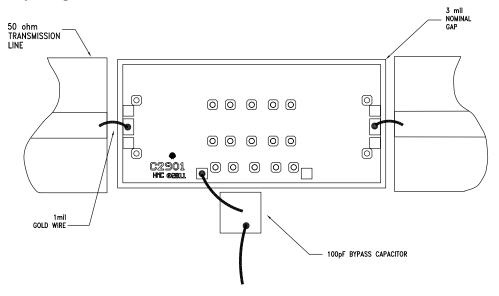
Die Packaging Information [1]

Standard	Alternate	
WP-9	[2]	

- [1] Refer to "Waffle-Pak & Gel-Pak" section for die packaging dimensions.
- [2] For alternate packaging information contact Hittite Microwave Corporation.

NOTES:

- 1. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 2. DIE THICKNESS IS .004".
- 3. TYPICAL BOND PAD IS .004" SQUARE..
- 5. BOND PAD METALIZATION: GOLD
- 6. BACKSIDE METALIZATION: GOLD
- 7. BACKSIDE METAL IS GROUND
- 7. CONNECTION NOT REQUIRED FOR UNLABELED PADS.



FILTER - TUNABLE, BAND PASS 19 - 38 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
Die Bottom	GND	Die bottom must be connected to RF/DC ground.	GND
2	RFIN	This pad is AC coupled and matched to 50 Ohms.	RFIN 3.5pF
5	RFOUT	This pad is AC coupled and matched to 50 Ohms.	3.5pF RFOUT
7, 8	Vfctl	Center frequency control voltage. Pads are connected together internally.	Vfctl 4 \(\alpha \) 0.4nH 100 \(\alpha \) \(\frac{1}{20pF} \) \(\frac{1}{21pF} \)

Assembly Diagram

- 1. The IMC899 I/O's are inherently capacitive in order to accommodate bond wire connections.

 2. 1 mill diameter bond wires can be used.

 3. Ideally, double bond wires 20 mils long, or a single bond wire 12 mils long should be used (approx.140 pH).

 4. It is recommended that on the opposite side of the bond wires, an additional 20–50 fF fringe capacitance be present.

3

FILTERS - TUNABLE - SMT

ANALOGDEVICES

NOTES:

FILTER - TUNABLE, BAND PASS 19 - 38 GHz