imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

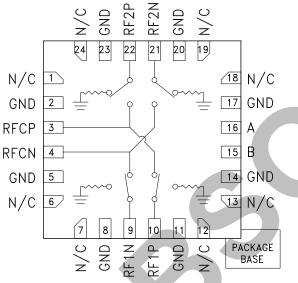
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

v02.0213


GaAs MMIC NON-REFLECTIVE DIFFERENTIAL SPDT SWITCH, DC - 4 GHz

Typical Applications

The HMC922LP4E is ideal for:

- Test & Measurement Equipment
- Antenna Diversity & Selector Selection
- Broadband Switch Matrices
- Military, EW & ECM
- SATCOM & Space

Functional Diagram

Features

Differential SPDT Functionality Low Insertion Loss: 0.8 dB High IP3: +50 dBm High Input P1dB: +35 dBm Positive Control: 0/+3V to 0/+5V 24 Lead 4x4 mm QFN Package: 16 mm²

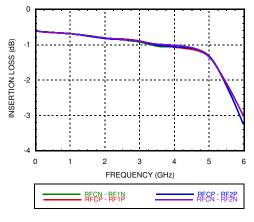
General Description

The HMC922LP4E is a DC to 4 GHz high isolation GaAs MMIC non-reflective Differential SPDT switch in a low cost leadless surface mount package. The switch is ideal for antenna diversity & selector selection, broadband switch matrices, test & measurement equipment, military and space applications yielding up to 60 dB isolation, low 0.8 dB insertion loss and +50 dBm input IP3. Power handling is excellent with the switch offering a P1dB compression point of +35 dBm. On-chip circuitry allows two positive voltage controls of 0/+3V to 0/+5V at very low DC currents.

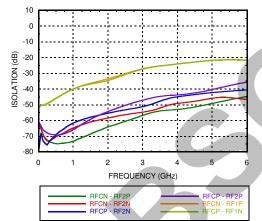
Electrical Specifications, $T_{A} = +25^{\circ}$ C, Vctl = 0/+3 Vdc (Unless Otherwise Stated), 50 Ohm System

	Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss			DC - 2.0 GHz 2.0 - 4.0 GHz		0.8 1.2	1.2 1.5	dB dB
Isolation:	State 1: RFCN-RF2P, RFCN-RF2N, RFCP- State 2: RFCN-RF1P, RFCN-RF1N, RFCP-	,	DC - 2.0 GHz 2.0 - 4.0 GHz	45 40	60 45		dB dB
Isolation	State 1: RFCN-RF1P, RFCP-RF1N State 2: RFCN-RF2P, RFCP-RF2N		DC - 2.0 GHz 2.0 - 4.0 GHz	30 20	40 30		dB dB
Return Loss (On State, Any Port)		DC - 2.0 GHz 2.0 - 4.0 GHz		20 15		dB dB	
Input Power for 1 dB Compression Vctl= 0/+3V Vctl= 0/+5V Vctl= 0/+5V		0.5 - 4.0 GHz		30 35		dBm dBm	
Input Power for 0.1 dB Compression Vctl= 0/+3V Vctl= 0/+5V Vctl= 0/+5V		0.5 - 4.0 GHz		27 32		dBm dBm	
Input Third Order InterceptVctl= 0/+3V(Two-Tone Input Power= +7 dBm Each Tone)Vctl= 0/+5V		0.5 - 4.0 GHz		50 50		dBm dBm	
Switching Characteristics tRISE / tFALL (10/90% RF) tON / tOFF (50% CTL to 10/90% RF)		DC - 4.0 GHz		15 40		ns ns	

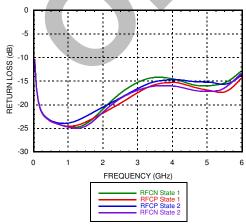
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



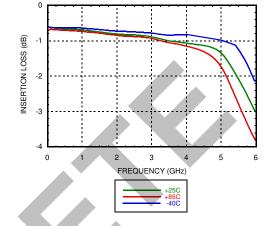
v02.0213

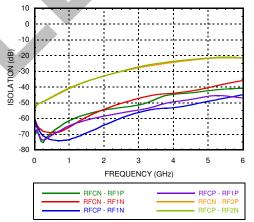


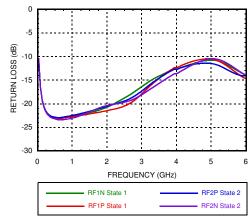
GaAs MMIC NON-REFLECTIVE DIFFERENTIAL SPDT SWITCH, DC - 4 GHz


Insertion Loss




Isolation State 1

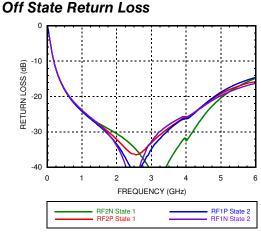

Return Loss RFC

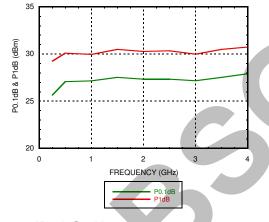


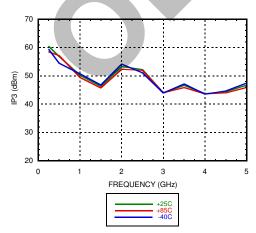
Isolation State 2

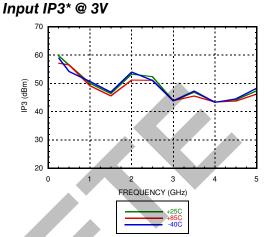
Return Loss RF1, 2

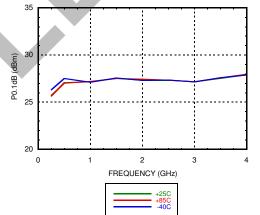
SWITCHES - SMT

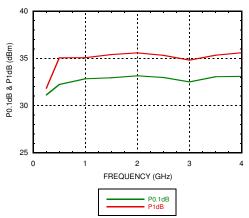

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v02.0213


GaAs MMIC NON-REFLECTIVE DIFFERENTIAL SPDT SWITCH, DC - 4 GHz







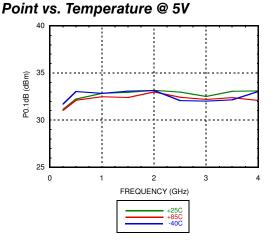
Input 0.1dB Compression Point vs. Temperature @ 3V

Input 0.1 dB & 1 dB Compression Point @ 5V

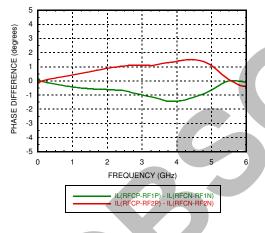
* Two-tone input power = +7 dBm each tone, 1 MHz spacing.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Input 0.1 dB Compression


HMC922LP4E

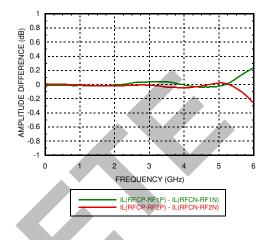
v02.0213



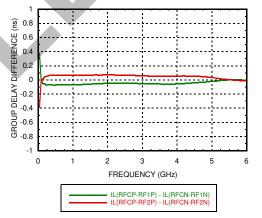
GaAs MMIC NON-REFLECTIVE DIFFERENTIAL SPDT SWITCH, DC - 4 GHz

Insertion Loss Amplitude Mismatch

Insertion Loss Phase Mismatch


Absolute Maximum Ratings

Control Voltage (A, B)	-0.5V to 8V DC
RF Input Power Through Path 3V/5V Termination Path 3V/5V	32 / 34 dBm 26 dBm
Channel Temperature	150 °C
Thermal Resistance (channel to package ground paddle) Through Path Termination Path	30 °C/W 79 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Group Delay Mismatch

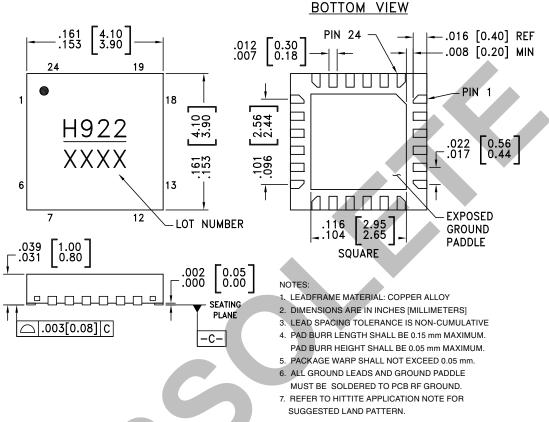
Control Voltages

State	Bias Condition	
Low	0 to +0.5 Vdc @ < 1 μA Typ.	
High	+3.0 to +5.5 Vdc @ 20 μA Typ.	

Truth Table

	Control Input		Signal Path State		
	А	В	RFCP to:	RFCN to:	
State 1	High	Low	RF1P	RF1N	
State 2	Low	High	RF2P	RF2N	

Do not operate continuously at RF power input greater than 1 dB compression and do not hot switch power levels grater than +27 dBm for control = 0/+3 Vdc, or +30 dBm for control = 0/+5 Vdc.



v02.0213

GaAs MMIC NON-REFLECTIVE DIFFERENTIAL SPDT SWITCH, DC - 4 GHz

Outline Drawing

Package Information

Part Number		Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC922LP4E	RoHS-co	mpliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H922</u> XXXX

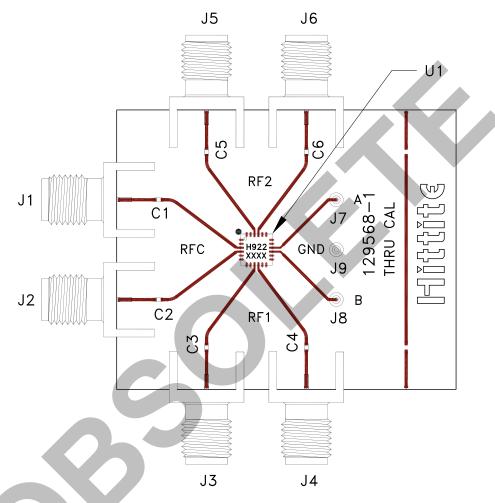
[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
3, 4, 9, 10, 21, 22	RFCP, RFCN, RF1N, RF1P, RF2N, RF2P	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
1, 6, 7, 12, 13, 18, 19, 24	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
2, 5, 8, 11, 14, 17, 20, 23	GND	Package bottom has exposed metal paddle that must be connected to PCB RF ground as well.	⊖ GND
16	A	See truth and control voltage tables.	R
15	В	See truth and control voltage tables.	⊥ c ⊥⊥

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v02.0213

GaAs MMIC NON-REFLECTIVE DIFFERENTIAL SPDT SWITCH, DC - 4 GHz

Evaluation PCB

List of Materials for Evaluation PCB 129570^[1]

Item	Description		
J1 - J6	PCB Mount SMA RF Connector		
J7 - J9	DC Pin		
C1 - C6	330 pF Capacitor, 0402 Pkg.		
U1	HMC922LP4E SPDT Switch		
PCB [2]	129568 Evaluation PCB		

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown above. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown above is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.