

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

- Small size product
- Compliant with RoHS recommendations and most of Lead Free Soldering Process
- Humidity calibrated within +/-3% @55%RH at 5Vdc
- Stable, proportional frequency output from 0 to 100% RH
- High quality thermistor

DESCRIPTION

Based on the rugged HS1101LF humidity sensor, HTF3000LF is a dedicated humidity and temperature transducer designed for OEM applications where a reliable and accurate measurement is needed. It features a very small size for easy, cost-effective mechanical mounting. Direct interface with a micro-controller is made possible with the module's linear frequency output.

FEATURES

- One of the smallest humidity/temperature modules on the market
- High reliability and long term stability
- Not affected by water immersion
- Stable characteristics with temperature
- Part could be washed with distilled water

Humidity Sensor Specific Features

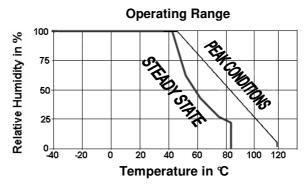
- Instantaneous de-saturation after long periods in saturation phase
- Fast response time
- High resistance to chemicals
- Patented solid polymer structure

Temperature Sensor Specific Features

- $10k\Omega + -1\%$ NTC temperature sensor
- Stable
- High sensitivity

APPLICATIONS

- Printers
- HVAC controller


. .

PERFORMANCE SPECS

MAXIMUM RATINGS

Ratings	Symbol	Value	Unit
Storage Temperature	Tstg	-40 to 105	C
Storage Humidity	RHstg	0 to 100	% RH
Supply Voltage (Peak)	Vs	16	Vdc
Humidity Operating Range	RH	0 to 100	% RH
Temperature Operating Range	Ta	-40 to 85	C

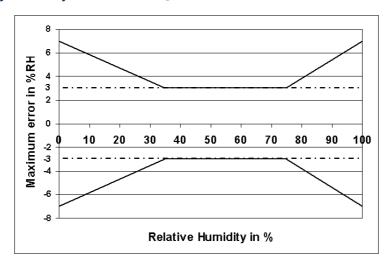
Peak conditions: less than 10% of the operating time.

ELECTRICAL CHARACTERISTICS

(Ta=23°C, Vs=5Vdc +/-5%, RL>1M Ω unless otherwise stated)

Humidity Characteristics	Symbol	Min	Тур	Max	Unit
Humidity Measuring Range	RH	0		100	%RH
Relative Humidity Accuracy (0 to 100% RH)	RH	Refer to	Refer to Chart 2 on page 3		
Supply Voltage	Vs	3	5	8	Vdc
Nominal Output @55%RH (at 5Vdc)	Fout	6560	6600	6640	Hz
Current consumption (Max at 16Vdc)	lc		0.18	1	mA
Supply Voltage Influence (3 to 7Vdc)	RH		+/-1		% RH
Average Sensitivity from 10% to 95%RH	ΔFout/ΔRH	-10	-12	-14	Hz/%RH
Humidity Hysteresis				+/-1	%RH
Long Term Stability	T		+/-0.5		%RH/yr
Time Constant (at 63% of signal, static) 40% to 95%RH, 2m/s	τ			10	S

(Ta=25℃)


Temperature Characteristics	Symbol	Min	Тур	Max	Unit
Nominal Resistance @25℃	R		10		kΩ
Beta value: B25/100	β	3346	3380	3413	
Temperature Measuring Range	Ta	-40		85	.c
Nominal Resistance Tolerance @25℃	R_N		1		%
Beta Value Tolerance	β		1		%
Response Time	τ		10		S

TYPICAL PERFORMANCE CURVES

HUMIDITY SENSOR

Relative Humidity Accuracy of HTF3000LF @23℃

Modeled Signal Output Equations

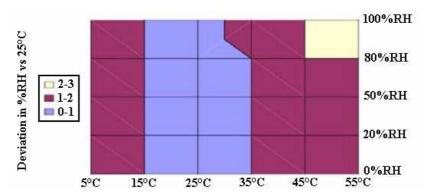
Fout = $7314 - 16.79*RH + 0.0886*RH^2 - 0.000358*RH^3$ Fout in Hz and RH in %

• Modeled Reversed Output Equations

RH = $89.8*10^{-10}*Fout^3 - 15.7486*10^{-5}*Fout^2 + 0.80945*Fout - 1009$ Fout in Hz and RH in %

• Typical response look-up table

RH (%)	1	5	10	15	20	25	30	35	40	45	50
Fout (Hz)	7295	7230	7155	7080	7010	6945	6880	6820	6760	6705	6650
RH (%)	55	60	65	70	75	80	85	90	95	99	
Fout (Hz)	6600	6550	6500	6450	6400	6355	6305	6260	6210	6170	


Output Voltage wave form

Temperature influence on HTF3000LF humidity measurement

Calibration data are traceable to NIST standards through CETIAT laboratory.

For demanding application, temperature coefficient could be compensated over operating temperature range using following formula:

 $RH_{corr} = RH + 0.08 * (T - 25)$ Fout _{Corr} = Fout - 0.88 * (T - 25) T in °C, RH in %, Fout in Hz

TEMPERATURE SENSOR

Typical temperature output

Depending on the needed temperature measurement range and associated accuracy, we suggest two methods to access to the NTC resistance values.

$$R_T = R_N * e^{\beta(\frac{1}{T} - \frac{1}{T_N})}$$

 R_T NTC resistance in Ω at temperature T in K NTC resistance in Ω at rated temperature T in K

T, T_N Temperature in K

β Beta value, material specific constant of NTC

e Base of natural logarithm (e=2.71828)

 \odot The exponential relation only roughly describes the actual characteristic of an NTC thermistor can, however, as the material parameter β in reality also depend on temperature. So this approach is suitable for describing a restricted range around the rated temperature or resistance with sufficient accuracy.

② For practical applications, a more precise description of the real R/T curve may be required. Either more complicated approaches (e.g. the Steinhart-Hart equation) are used or the resistance/temperature relation as given in tabulation form. The below table has been experimentally determined with utmost accuracy for temperature increments of 1 degree.

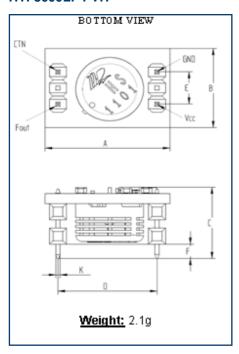
Actual values may also be influenced by inherent self-heating properties of NTCs. Please refer to MEAS-France Application Note HPC106-0 "Low power NTC measurement".

Temperature Look-up Table

Temp	Rout	Max Dev
(°C)	(Ω)	(Ω)
-40	195652	7921
-39	184917	7378
-38	174845	6874
-37	165391	6407
-36	156513	5974
-35	148171	5571
-34	140330	5197
-33	132958	4849
-32	126022	4527
-31	119494	4226
-30	113347	3947
-29	107565	3687
-28	102116	3446
-27	96978	3221
-26	92132	3011
-25	87559	2815
-24	83242	2633
-23	79166	2463
-22	75316	2305
-21	71677	2157
-20	68237	2019
-19	64991	1890
-18	61919	1770
-17	59011	1658
-16	56258	1553
-15	53650	1454
-14	51178	1363
-13	48835	1277
-12	46613	1197
-11	44506	1121
-10	42506	1051
-9	40600	985
-8	38791	923
-7	37073	865
-6	35442	810
-5	33892	759
-4	32420	712
-3	31020	667
-2	29689	625
-1	28423	586
0	27219	549
1	26076	514

Temp Rout Max II (°C) (Ω) (Ω) 2 24988 482 3 23951 452 4 22963 423 5 22021 396 6 21123 371 7 20267 348 8 19450 326 9 18670 305	\
2 24988 482 3 23951 452 4 22963 423 5 22021 396 6 21123 371 7 20267 348 8 19450 326	
3 23951 452 4 22963 423 5 22021 396 6 21123 371 7 20267 348 8 19450 326	
4 22963 423 5 22021 396 6 21123 371 7 20267 348 8 19450 326	
5 22021 396 6 21123 371 7 20267 348 8 19450 326	
6 21123 371 7 20267 348 8 19450 326	
7 20267 348 8 19450 326	
8 19450 326	
9 18670 305	
10 17926 285	
11 17214 267	
12 16534 250	
13 15886 233	
14 15266 218	}
15 14674 204	-
16 14108 190	
17 13566 178	}
18 13049 166	j
19 12554 154	
20 12081 144	
21 11628 134	
22 11195 125	í
23 10780 116	,
24 10382 108	}
25 10000 100)
26 9634 100)
27 9284 100)
28 8947 100)
29 8624 99	
30 8315 99	
31 8018 98	
32 7734 98	
33 7461 97	
34 7199 96	
35 6948 95	
36 6707 94	
37 6475 93	
38 6253 92	
39 6039 91	
40 5834 90	
41 5636 89	
42 5445 88	
43 5262 87	

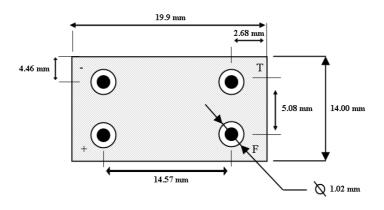
Temp	Rout	Max Dev
(°C)	(Ω)	(Ω)
44	5086	86
45	4917	85
46	4754	83
47	4597	82
48	4446	81
49	4301	80
50	4161	79
51	4026	77
52	3896	76
53	3771	75
54	3651	74
55	3535	73
56	3423	72
57	3315	70
58	3211	69
59	3111	68
60	3014	67
61	2922	66
62	2834	65
63	2748	64
64	2666	63
65	2586	62
66	2509	60
67	2435	59
68	2364	58
69	2294	57
70	2228	56
71	2163	55
72	2100	54
73	2040	53
74	1981	52
75	1925	52
76	1870	51
77	1817	50
78	1766	49
79	1716	48
80	1669	47
81	1622	46
82	1578	46
83	1535	45
84	1493	44
85	1452	43


QUALIFICATION PROCESS

RESISTANCE TO PHYSICAL AND CHEMICAL STRESSES

- HTF3000LF has passed through qualification processes of MEAS-France including vibration, shock, storage, high temperature and humidity.
- Additional tests under harsh chemical conditions demonstrate good operation in presence of salt atmosphere, SO2 (0.5%), H2S (0.5%), 03, NOx, NO, CO, CO2, Softener, Soap, Toluene, acids (H2SO4, HNO3, HCI), HMDS, Insecticide, Cigarette smoke, this is not an exhaustive list.
- ESD: HTF3000LF is able to sustain a minimum of +/-8kV (contact discharge).

PACKAGE OUTLINE


HTF3000LF PVH

Dim	Α	В	С	D	Е	F	K
Min	17.9	12.0	10.7	14.25	4.80	1.76	0.54
Max	18.9	13.0	11.7	14.95	5.40	3.76	0.74

Dimensions in millimeters

RECOMMENDED THROUGH HOLE FOOTPRINT

SOLDERING INFORMATION

HTF3000LF PVH: Hand soldering or wave soldering

ORDERING INFORMATION

HPP808H031 FOR HTF3000LF PVH STORAGE: TUBE M.Q.P OF 48 PARTS; BOX M.Q.P OF 1008 PARTS (21 TUBES)

Sample kit of HTF3000LF is available through MEASUREMENT SPECIALTIES web site: http://www.meas-spec.com/humidity-sensors.aspx

Customer Service contact details

Measurement Specialties, Inc - MEAS France Impasse Jeanne Benozzi CS 83 163 31027 Toulouse Cedex 3 FRANCE

> Tél: +33 (0)5 820 822 02 Fax: +33(0)5 820 821 51

Sales: humidity.sales@meas-spec.com

Revision	Comments	Who	Date
F	HTF3000LF RL reference added, product storage quantities added	D. LE GALL	November 07
G	Mechanical dimension tolerance updated	D. BEZ	December 07
Н	Soldering information paragraph updated, chart2 improved (poor image), HTF3000LF SMD and HTF3000LF RL references removed	D. LE GALL	January 08
I	Standardized datasheet format	D. LE GALL	April 08
J	New MEAS template, MEAS-France contact details updated	D. LE GALL-ZIRILLI	October 12

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.