

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HPS-100

Automotive Hydrogen Sensor

General Description

The HPS-100 is an automotive hydrogen sensor that monitors hydrogen concentrations of 0 – 100 Vol%. The design fulfills Zone 2 requirements according to ATEX 100a. The predicted concentration is transmitted to the host via the CAN bus interface or PWM.

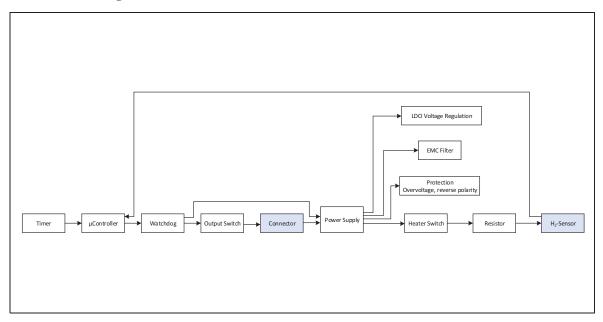
Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

The benefits and features of HPS-100, Automotive Hydrogen Sensor are listed below:

Figure 1: Added Value of Using HPS-100

Benefits	Features
High sensitivity over large concentration range	 0 – 100% H₂ in nitrogen Accuracy ±2% vol. Resolution ±0.5% vol.
Low cross sensitivity	 Heated field-effect transistor technology No detection towards HC, H₂S, N₂, CO, CO₂, NO_x
Designed for humid environment	 Humidity influence <1% typical Operating humidity range 5–100% relative humidity including condensation
Fast response time	 Start-up time <5s Speed of response (t₉₀) < 5s Speed of recovery < 5s CAN bus interface 500 kbit/s (ISO11898-2) PWM output (on request)
Low power consumption	- 70 mA (typical)
Long-term stability and reliability	 ESD and EMC protection Operating temperature range -40°C to 90°C Operating pressure range 0.3 – 3 bar (absolute)
Safety integrity level and explosion proof	Designed for SIL2 (IEC 61508) and ATEX 100a zone 2
Long lifetime	IP6K7 and IP6K9K qualified with expected lifetime of 5 years


Applications

Hydrogen gas measurement in fuel cell systems and other in-process applications.

Block Diagram

The functional blocks of this device for reference are shown below:

Figure 2: HPS-100 Block Diagram

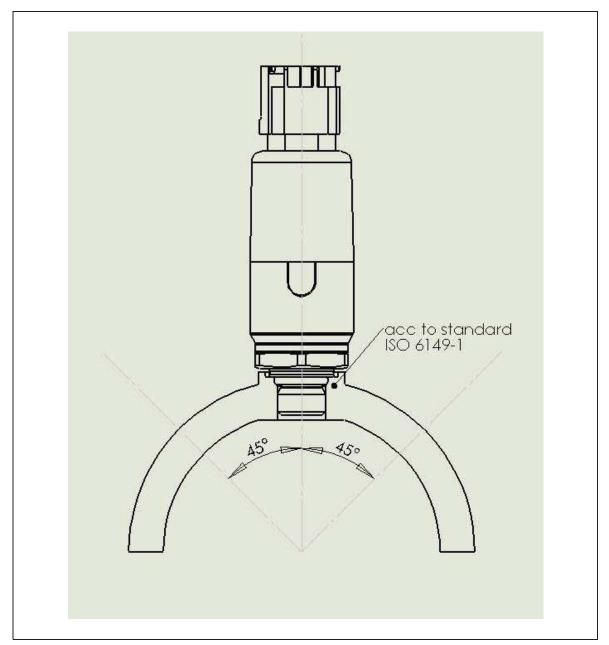
Page 2ams DatasheetDocument Feedback[v1-00] 2015-Apr-06

Overview

Figure 3: HPS-100 Overview

Installation

The HPS-100 is designed for process connection with metric straight screw thread with o-ring M14x1.5 in accordance with ISO 6149-3 (stud end) and to fit into ISO 6149-1 (port).


Recommended O-ring, 11.3 ± 0.2 , 2.2 ± 0.08 or 11.3 ± 0.2 , 2.4 ± 0.08 EPDM 70 "Peroxide crosslinked" or FPM 75 (Viton)

Note(s): The O-ring is currently part of the delivery

Recommended torque for fixation: 15 Nm (+10% -0%) acc. ISO 6149-3

Recommended orientation of the sensor, see below.

Figure 4:
Recommended Mounting Position of the Sensor

Page 4
Document Feedback

Electrical Interface

Electrical Connector

The sensor connector is a A2105404381 - Code A with mating connector MQS 4-pin, TE Connectivity AMP p/n 1-967640-1 Code A.

Figure 5: Pin Coding AMP A2105404381 - Code A

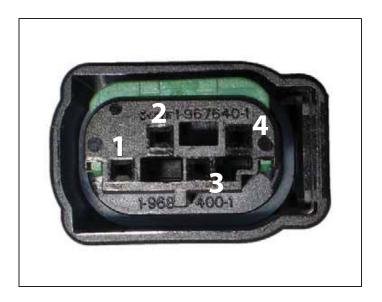


Figure 6: Pin Assignment

Pin	Function
1	Vcc
2	GND
3	CAN – High no termination resistor
4	CAN – Low no termination resistor

ams DatasheetPage 5[v1-00] 2015-Apr-06Document Feedback

CAN Bus Interface

This section describes the CAN bus interface that is available in some variants of HPS-100.

Physical Interface

The physical interface is two-wire balanced. It is a high speed CAN interface (ISO 11898-2) with bus bit rate at 500 kbit/s.

CAN Matrix

HPS-100 will send the first CAN message within 0.1 s after reset. The repetition rate of the CAN messages is 100ms \pm 2ms. The first $\rm H_2$ concentration will be delivered after 5 s. The CAN messages prior to that will have the Not_ready bit set, indicating that the concentration value of the message is not valid.

In case of a warm restart (<5 s) error category 1 will be set for 10 s. The Msg Counter increments with each CAN message.

The CAN message has the ID 1120 (0x0460). The byte 7 is not used and has the value 0.

Page 6ams DatasheetDocument Feedback[v1-00] 2015-Apr-06

Figure 7: CAN Matrix Message Layout HPS-100

System:	H2AS		Receiver												
Name:	H2 Anode Sensor			1											
ID: (hex)	0x460			1											
Datalengthcode:	8			1											
Interrupt:	no			Rev. 3.1											
Transceive:	Tx			1											
Remote:	no			1											
Repetition rate:	100 ms						MSB							LSB	
variables	short name	datatype	resolution	phys. range / unit	raw range	no value	b7	b6	b5	b4	b3	b2	b1	b0	Byte-No.
	01101111111110	uninitypo		prijer runge / unit	. un runge										
H2 Concentration	H2AS Con	byte	0.5	0 100 Vol.% H2	0 200	255									Byte 0
Status															
Sensor not ready	H2AS_not_ready	bit												b0	Byte 1
Error Category	H2AS_Err_Cat	2 bit										b2	b1		
EMC correction active	H2AS_EMC_Corr	bit									b3				
Error 2		bit								Х					
Error 3		bit							Х						
Error 4		bit						Х							
Error 5		bit					Х								
Board Temperature	H2AS_BT	2 byte	0.1	-40°C 155°C	0 1950	65535	b15	b14	b13	b12	b11	b10	b9	b8	Byte 2
		(Motorola forma	ľ				b7	b6	b5	b4	b3	b2	b1		Byte3
SW Version y.z	H2AS_SW	byte	1	0F.0F	0 255		У	у	У	У	Z	Z	Z	Z	Byte 4
HW Version															
Туре	H2AS_HW_Type	2 bit	1	1	1		b7	b6							Byte 5
HW release	H2AS_HW_Rev	6 bit	1	0 63	0 63			<u> </u>	b5	b4	b3	b2	b1	b0	Byte 5
Msg Counter	H2AS_Count	byte	1	0 127	0 127	255	to be	increm	ented	each n	nessag	je!			Byte 6
L															
Definition Error Category :	Code	Name		Description											•
	0	No Error		H2AS Sensor OK											
	1	Performance E		General function still g											
	2	Slight function		General function still g	_			_							
L	3	Severe function	nal error	Severe error, general	function NOT	given any	more, s	ensor	not lon	ger tru	stable	(= sign	al not a	availabl	e)
Definition HW Version Type :	Code	Name		Description											
	0	H2ES	Type A	H2 Exhaust Sensor											
	1	H2AS		H2 Anode Sensor			valid fo	or this o	compor	nent!					
	2	H2S		H2 Ambient Sensor					•						
	3	H2ES	Type B	H2 Stack Module Ver	nt Sensor										

Byte 0, H₂ Concentration

Figure 8: Byte 0 Bit Order

Bi	t	MSB 7	6	5	4	3	2	1	LSB 0
Byte	9 0	Х	Х	Х	Х	Х	Х	Х	Х

This byte shows the H_2 concentration in a resolution of 0.5.

x = Concentration in % Hydrogen

(EQ1) Byte Value = $(x \% H_2)^* 200/ (100 \% H_2)$

(EQ2) x % = Byte Value *(100% H₂)/200

Range: 0 - 200 (Hexadecimal 0 - C7) No Value: 255 (Hexadecimal FF)

Values: 0 - 100% H₂

Resolution: $0.5 = (100 \% H_2) / 200$

The No Value is sent if there is no valid H₂ concentration (accompanied by Not_ready bit in status byte (Byte 1))

Byte 1 Status

Figure 9: Byte 1 Status Bit Assignment

Bit	MSB 7	6	5	4	3	2	1	LSB 0
Byte 1	Error 5	Error 4	Error 3	Error 2	EMC_Corr	Bit 2 Err_ Category	Bit 1 Err_ Category	Not_ready

This byte shows the status of the module.

Bit 0: If the Not_ready bit is set, the module is not up or not working.

Value: 0 or 1 No Value: 1

Bit 1+2: The error category

Value: 0 - 3

Figure 10: Definition of Error Category

Value	Name	Description
0	No error	Sensor OK
1	Performance error	General function still given; warm start-up indication (<5s)
2	Slight functional error	General function still given but high likelihood for upcoming severe error (sensor should be replaced)
3	Severe functional error	Severe error, general function NOT given anymore, sensor not longer trustable (=signal not available)

Bit 3: EMC disturbance detected, compensation active (0-no disturbance, 1-disturbance)

Bit 4 to 7: Not used.

Byte 2 + Byte 3, Board Temperature

Figure 11: Byte 2 + Byte 3 Board Temperature Bit Order

Bit	MSB 7	6	5	4	3	2	1	LSB 0
Byte 2	Х	Х	Х	Х	Х	Х	Х	Х
Byte 3	Х	Х	Х	Х	Х	Х	Х	Х

These two bytes show the board temperature in °C.

Range: 0 - 1950 (Hexadecimal 0 - 79E)

Value: -40 °C to 155 °C

No value: 65335 (Hexadecimal FFFF)

Resolution: 0.1 °C

0-399 = -40 °C to -0.1 °C

400 = 0 °C

401-1950 = 0.1 °C to 155 °C

Byte 2 is the high byte and byte 3 the low byte.

ams DatasheetPage 9[v1-00] 2015-Apr-06Document Feedback

Byte 4, Software Version Y.Z

Figure 12:
Byte 4 Software Version Numbering Code

Bit	MSB 7	6	5	4	3	2	1	LSB 0
Byte 4	Y	Y	Y	Y	Х	Х	Х	Х

This byte shows the firmware version.

View: Y.Z

Range: 0 - 255 (Hexadecimal 0 - FF)

Value: 0.0 - 15.15 (Hexadecimal 0.0 - F.F)

Byte 5, Hardware Version

Figure 13:
Byte 5 Hardware Version Numbering Code

Bit	MSB 7	6	5	4	3	2	1	LSB 0
Byte 5	HW Type	HW Type	Rev.	Rev.	Rev.	Rev.	Rev.	Rev.

This byte is divided into two parts. The first part shows the hardware type.

Bit 6 and 7: HW Type

Range: 0 - 3 here 1

Figure 14: Definition of HW Version Type

HW Type	Name	Description
0	HLS-440P type A	H ₂ Exhaust Sensor (H2ES Type A)
1	HPS-100	H ₂ Anoder Sensor (H2AS)
2		H ₂ Ambient Sensor (H2S)
3	HLS-440P type B	H ₂ Stack Module Vent Sensor (H2ES Type B)

The second part of byte 5 shows the revision of the hardware.

Bit 0 - 5: Revision of the hardware.

Range: 0 - 63

Byte 6, Msg Counter

Figure 15: Byte 6 Message Counter Order

	Bit	MSB 7	6	5	4	3	2	1	LSB 0
Ī	Byte 6	Х	Х	Х	Х	Х	Х	Х	Х

The Msg Counter byte numbers the CAN messages and is incremented by 1 with each message

Range: 0 - 127 (Hexadecimal 0 - 7F)

Value: 0 - 127

After reaching the value 127 the counter starts from 0 again.

Byte 7, Empty

Figure 16: Byte 7 Default Values

Bit	MSB 7	6	5	4	3	2	1	LSB 0
Byte 7	0	0	0	0	0	0	0	0

This byte is needed to fulfill the CAN data length code of 8 bytes. This byte is not used and has the value 0.

PWM

This section describes the PWM output that is available in some variants of HPS-100.

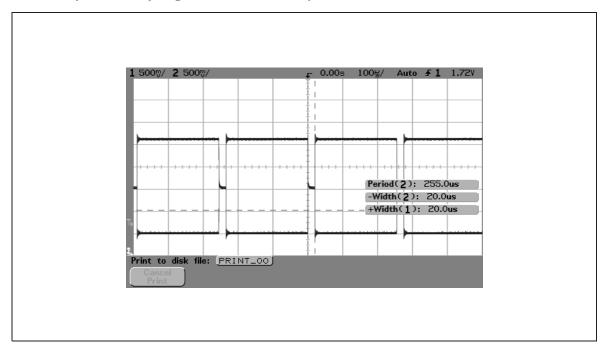
Physical Interface

The electrical connector is the same as in the variants with CAN bus interface (see Electrical Connector).

The PWM signal is created as a differential CAN signal on pin 3 and 4. A CAN signal is said to be in a dominant state when the signal lines are separated (a dominant bit is transmitted). When the signal lines are at the same voltage level, the state is recessive. Recommended circuitry to convert CAN signals to TTL is specified in a separate document, available on request. The PWM signal is only an output signal. No other transmitting devices should be attached to the bus.

The PWM Signal

The PWM signal has a period time of 255 μ s. The rather short period is chosen since modern CAN transceivers do not allow for a longer dominant state.


The duration of the recessive state can be translated into output $\rm H_2$ prediction from the sensor module. The recessive duration (pulse width) ranges from 20 to 220 μs , which corresponds to 0 to 100% hydrogen. An error is shown as a 10 μs pulse width. At startup the pulse width will be 255 μs (100% duty cycle) until the first valid $\rm H_2$ concentration is delivered after 5 s.

Page 12ams DatasheetDocument Feedback[v1-00] 2015-Apr-06

The figure below shows the output for 0% hydrogen (pulse width of 20 μ s).

Figure 17: Sensor Output for 0% Hydrogen (Pulse Width of 20 μs)

The relation between detected H_2 concentration (in ppm) and pulse width (in μ s) is:

(EQ3)
$$H_2 = (pulse width - 20)*5000$$

The figure below shows the relation between H₂ prediction and pulse width.

Figure 18: Relation Between H₂ Prediction and Pulse Width

Pulse Width	Message Type
10 μs	Error
20 μs	0% H ₂
21 μs	0.5% H ₂
219 µs	99.5% H ₂
220 µs	100% H ₂

ams Datasheet [v1-00] 2015-Apr-06

Specifications

Figure 19: Typical Characteristics

Description	Value	
	Sensor Function	
- .		
Target gas	Hydrogen	
Concentration range	0 – 100 Vol% H ₂ in N ₂	
Accuracy	± 2 Vol% under typical conditions	
Resolution	0.5 Vol%	
Speed of response (t ₉₀)	<5 s	
Speed of recovery	<5 s	
Cross-sensitivity	None towards HC, H ₂ S, N ₂ , CO, CO ₂ , NO _x Some influence of humidity, depending on application conditions (typically ±1 Vol% H ₂) Humidity correction by subtracting 1.5%	
Start-up time	5 s	
Expected lifetime	5 years or 3000 operation hours	
	Safety	
Explosion proof	Designed to fulfill Zone 2 requirements according to ATEX 100a	
Self test/Error handling	Yes	
	Electrical	
Supply voltage	8.5 –16 V	
Supply current	70 mA typical @ 13.8 V and 20 °C, increased current during start-up phase (avg. 200 mA during first 1s)	
CAN interface	Version 2.0 ISO 11898	
Connector	A2105404381 - Code A	
Mating Connector	MQS 4-pin, AMP 1-967640-1 Code A	
ESD/Reverse polarity	Yes	
	Environmental	
Operation temperature range	-40 °C to 90 °C	
Storage temperature range	-50 °C to 95 °C	
Humidity	5-100% including condensation	

Page 14
Document Feedback

Description	Value	
Operating Pressure	0.3 – 3 bar(a)	
EMC	Automotive requirements	
Mechanical		
Dimensions (L, Ø)	L=93.5mm Ø = 30mm	
Stud	M14x1.5 acc. to standard ISO 6149-3	
O-ring	ID: 11.3 ± 0.2 mm, rec. cord size 2.2 ± 0.08 mm alt. cord size 2.4 ± 0.08 mm	
Weight	77 g	
Material	Stainless steel and PBT GF30	
Filter membrane	Pall SUPOR 450R, 0.45 μm	
IP code	IP6K7 and IP6K9K	

The figure below describes the specification of the different variants of HPS-100

Figure 20: Specification of the Different Variants of HPS-100

Description	Default	On Request	
CAN interface	Version 2.0 ISO 11898		n.a.
CAN bit rate (kbits/s)	500	250	n.a.
PWM output		-	Yes

ams DatasheetPage 15[v1-00] 2015-Apr-06Document Feedback

Handling Instructions

Due to the fact that the sensor element consists of a silicon chip facing the surrounding the following precautions have to be taken into account:

During storage and handling avoid:

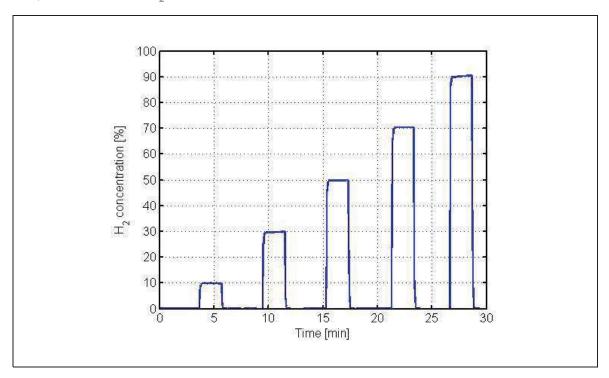
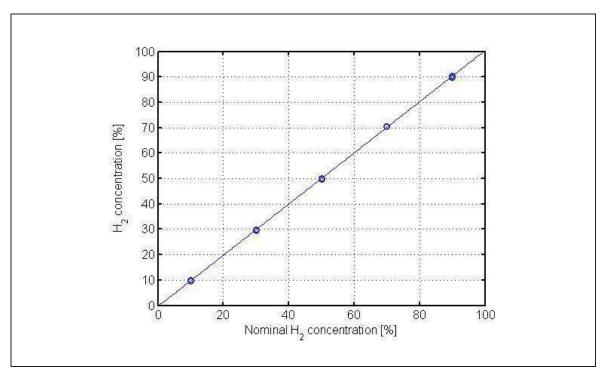
- Humidity (condensing conditions)
- Dropping (sensor must be replaced if dropped)
- Dust (especially if cap is removed)
- Mechanical impact (especially the entrance membrane)
- Electromagnetic radiation (rf fields, high magnetic fields)

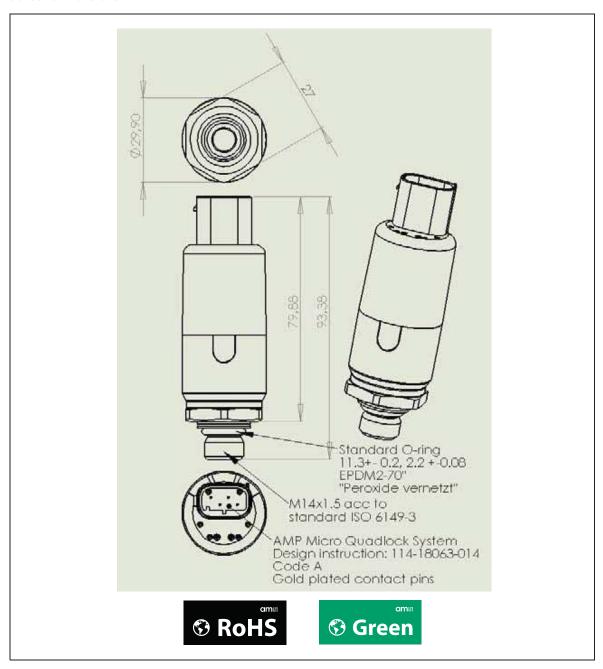
In case of storage and transport it is recommended to keep the sensor within its original packaging (plastic cap and ESD protected bubble bag). The disassembly of any parts is not allowed, except for the removal of the plastic cap directly before final assembly.

Page 16ams DatasheetDocument Feedback[v1-00] 2015-Apr-06

Reference Data

Figure 21: Concentration Measurement with $\rm H_2$ Pulse Width of 2 min and Nominal Concentration 10%, 30%, 50%, 70% and 90% vol. $\rm H_2$


Figure 22:
Deviation of Prediction Over Nominal Concentration

Mechanical Information

Figure 23: Sensor Dimensions

Note(s) and/or Footnote(s):

1. Dimensions are in millimeters.

Mating Connector: Housing: A2105404381 – code A

Contacts: A0135454526 Seals: A0005456980

O-ring: 11.3±0.2, 2.2±0.08 EPDM 70 "Peroxide crosslinked"

Page 18ams DatasheetDocument Feedback[v1-00] 2015-Apr-06

Ordering & Contact Information

Figure 24: **Ordering Information**

Ordering Code	Туре	Delivery Form	Delivery Quantity
HPS-100	CAN (500 kbit/s) ⁽¹⁾	Individually Wrapped	Single Item

Note(s) and/or Footnote(s):

1. For availability of other variants contact ams.

Buy our products or get free samples online at:

www.ams.com/ICdirect

Technical Support is available at: www.ams.com/Technical-Support

Provide feedback about this document at:

www.ams.com/Document-Feedback

For further information and requests, e-mail us at:

ams_sales@ams.com

For sales offices, distributors and representatives, please visit:

www.ams.com/contact

Headquarters

ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: www.ams.com

ams Datasheet Page 19 **Document Feedback**

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Page 20
Document Feedback [v1-00] 2015-Apr-06

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

ams DatasheetPage 21[v1-00] 2015-Apr-06Document Feedback

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Page 22ams DatasheetDocument Feedback[v1-00] 2015-Apr-06

Revision Information

Changes from (2014-Nov) to current revision 1-00 (2015-Apr-06)	Page
Content of Applied Sensor datasheet was updated to the latest ams design	

Note(s) and/or Footnote(s):

- 1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- 2. Correction of typographical errors is not explicitly mentioned.

ams DatasheetPage 23[v1-00] 2015-Apr-06Document Feedback

Content Guide

1 General Description

- 1 Key Benefits & Features
- 2 Applications
- 2 Block Diagram
- 3 Overview
- 4 Installation

5 Electrical Interface

- 5 Electrical Connector
- 6 CAN Bus Interface
- 6 Physical Interface
- 6 CAN Matrix
- 8 Byte 0, H2_Concentration
- 8 Byte 1 Status
- 9 Byte 2 + Byte 3, Board Temperature H2AS_BT
- 10 Byte 4, Software Version Y.Z
- 10 Byte 5, Hardware Version
- 11 Byte 6, Msg Counter
- 11 Byte 7, Empty
- 12 PWM
- 12 Physical Interface
- 12 The PWM Signal
- 14 Specifications
- 16 Handling Instructions
- 17 Reference Data
- 18 Mechanical Information
- 19 Ordering & Contact Information
- 20 RoHS Compliant & ams Green Statement
- 21 Copyrights & Disclaimer
- 22 Document Status
- 23 Revision Information

Page 24ams DatasheetDocument Feedback[v1-00] 2015-Apr-06