Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ### HS4040xAQx Series **AUTOMOTIVE GRADE** RoHS #### **Main Features** | Symbol | Value | Unit | |------------------------------------|----------|------| | I _{T(RMS)} | 40 | А | | V _{DRM} /V _{RRM} | 400 | V | | I _{GT} | 15 to 65 | mA | ### **Schematic Symbol** ### **Description** The HS4040xAQx series of SCRs offer fast turn-off time (tq) characteristics required for applications such as power inverters, switching regulator, and high frequency pulse circuits. These fast turn-off time SCRs offer high dv/dt and high di/dt characteristics required in higher frequency (>1000 PPS) switching circuits and a higher temperature environment. ### **Features & Benefits** - RoHS compliant - Voltage capability up to 400 V - Surge capability up to 520 A - TO-220 and TO-263 packages - AEC-Q101 Fully compliant - 150°C maximum junction temperature #### **Applications** Fast turn-off time SCRs are ideal for multi phase voltage regulator circuits, DC/AC inverters, and higher frequency pulsing power supplies. #### **Absolute Maximum Ratings** | Symbol | Parameter | Test Conditions | Value | Unit | | |---------------------------|---|---|------------|------------------|--| | I _{T(RMS)} | RMS on-state current | T _c = 115°C | 40 | А | | | I _{T(AV)} | Average on-state current | T _C = 115°C | 25.0 | А | | | 1 | Peak non-repetitive surge current | single half cycle; f = 50Hz;
T _J (initial) = 25°C | 430 | А | | | I _{TSM} | r cux non repetitive surge current | single half cycle; f = 60Hz;
T _J (initial) = 25°C | 520 | | | | l²t | l²t Value for fusing | $t_p = 8.3 \text{ ms}$ | 1122 | A ² s | | | di/dt | Critical rate of rise of on-state current | f = 60Hz ; T _J = 150°C | 175 | A/µs | | | I _{GM} | Peak gate current | T _J = 150°C | 3.5 | А | | | P _{G(AV)} | Average gate power dissipation | T _J = 150°C | 0.8 | W | | | T _{stg} | Storage temperature range | | -40 to 150 | °C | | | T _J | Operating junction temperature range | | -40 to 150 | °C | | | $V_{\rm DSM}/V_{\rm RSM}$ | Peak non-repetitive blocking voltage | Pw=100 μs | 500 | V | | ### Electrical Characteristics (T₁ = 25°C, unless otherwise specified) | Symbol | Test Conditions | HS4040xAQ | HS4040xAQ2 | HS4040xAQ3 | Unit | | |-----------------|--|-----------|------------|------------|------|----| | | | MAX. | 35 | 45 | 65 | mA | | I _{GT} | $V_D = 12V; R_L = 30 \Omega$ | MIN. | 15 | 30 | 38 | mA | | V _{GT} | | MAX. | | 1.5 | | V | | I _{GT} | $V_{D} = 12V; R_{L} = 30\Omega; T_{J} = -40^{\circ}C$ | MAX. | 75 | 95 | 160 | mA | | dv/dt | $V_D = V_{DRM}$; gate open; $T_J = 150$ °C | MIN. | 550 | | V/µs | | | $V_{\rm GD}$ | $V_D = V_{DRM}$; $R_L = 3.3 \text{ k}\Omega$; $T_J = 150^{\circ}\text{C}$ | MIN. | 0.2 | | V | | | I _H | $I_{T} = 400 \text{mA (initial)}$ | MAX. | 70 | 120 | 200 | mA | | t _q | $I_{\rm T}$ =0.5A; $t_{\rm p}$ =50 μ s; dv/dt=5V/ μ s; di/dt=-30A/ μ s | MAX. | 15 | 12 | 5 | μs | | t _{gt} | $I_{G} = 2 \times I_{GT}$; PW = 15 μ s; $I_{T} = 80A$ | TYP. | | 3.0 | 3.5 | μs | ### **Static Characteristics** | Symbol | Test Conditions | | | HS4040xAQ | HS4040xAQ2 | HS4040xAQ3 | Unit | |-------------------------------------|-------------------------------------|---|------|-----------|------------|------------|------| | V _{TM} | $I_{T} =$ | $I_{_{\rm T}}$ = 80A; $t_{_{\rm p}}$ = 380µs MAX. | | | 1.6 | 1.8 | V | | | | T _J = 25°C | | 10 | | | | | I _{DRM} / I _{RRM} | V _{DRM} / V _{RRM} | T _J = 125°C | MAX. | 2000 | | | μΑ | | | | T _J = 150°C | | 4000 | | | | ### **Thermal Resistances** | Symbol | Parameter | Value | Unit | |-------------------|-----------------------|-------|------| | $R_{\theta(J-C)}$ | Junction to case (AC) | 0.6 | °C/W | Figure 1: Normalized DC Holding Current vs. Junction Temperature Figure 2: Normalized DC Gate Trigger Current vs. Junction Temperature Figure 3: Normalized DC Gate Trigger Voltage vs. Junction Temperature Figure 5: Power Dissipation (Typical) vs. RMS On-State Current Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current Figure 4: On-State Current vs. On-State Voltage (Typical) Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current **Figure 8: Peak Capacitor Discharge Current** ### Figure 9: Peak Capacitor Discharge Current Derating ### Figure 10: Surge Peak On-State Current vs. Number of Cycles SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive RMS On-State Current: [$I_{T(RMS)}$]: Maximum Rated Value at Specified Case Temperature - 1. Gate control may be lost during and immediately following surge current interval. - 2. Overload may not be repeated until junction temperature has returned to steady-state rated value. ### **Soldering Parameters** | Reflow Condition | | Pb – Free assembly | |--|---|-------------------------| | | -Temperature Min (T _{s(min)}) | 150°C | | Pre Heat | -Temperature Max (T _{s(max)}) | 200°C | | | -Time (min to max) (t _s) | 60 - 180 secs | | Average ramp up rate (Liquidus Temp) (T _L) to peak | | 5°C/second max | | T _{S(max)} to T _L | - Ramp-up Rate | 5°C/second max | | Reflow | -Temperature (T _L) (Liquidus) | 217°C | | Reliow | -Temperature (t _L) | 60 – 150 seconds | | PeakTemp | perature (T _P) | 260 ^{+0/-5} °C | | Time within 5°C of actual peak Temperature (t _p) | | 20 - 40 seconds | | Ramp-down Rate | | 5°C/second max | | Time 25°C | to peakTemperature (T _P) | 8 minutes Max. | | Do not exc | ceed | 280°C | ### **Physical Specifications** | Terminal Finish | 100% Matte Tin-plated | | |-----------------|---|--| | Body Material | UL recognized epoxy meeting flammability classification V-0 | | | Lead Material | Copper Alloy | | ### **Design Considerations** Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage. ### **Environmental Specifications** | Test | Specifications and Conditions | |----------------------------------|---| | AC Blocking | MIL-STD-750, M-1040, Cond A Applied
Peak AC voltage @ 150°C for 1008 hours | | Biased Temperature
& Humidity | EIA / JEDEC, JESD22-A101
1008 hours; 320V - DC: 85°C;
85% rel humidity | | Temperature Cycling | JESD22 A-104 Appendix 6
-55°C to 150°C, 15-minute dwell,
1000 cycles | | Intermittent Operational Life | T _A =25C, ΔT _J ≥ 100°C, 1008hrs | | Autoclave (Pressure Cooker Test) | EIA/JEDEC: JESD22-A102
121°C, 100%RH, 15psig, 96hours | | Resistance to Solder Heat | JESD22 A-111: 260°C, 10 seconds | | Solderability | ANSI/J-STD-002, category 3, Test A | ### Dimensions — TO-220AB (R-Package) — Non-Isolated Mounting Tab Common with Center Lead be applied to mounting tab is 8 in-lbs. (0.904 Nm). | Dimension | Inc | hes | Millin | neters | |-----------|-------|-------|--------|--------| | Dimension | Min | Max | Min | Max | | А | 0.380 | 0.420 | 9.65 | 10.67 | | В | 0.105 | 0.115 | 2.67 | 2.92 | | С | 0.230 | 0.250 | 5.84 | 6.35 | | D | 0.590 | 0.620 | 14.99 | 15.75 | | Е | 0.142 | 0.147 | 3.61 | 3.73 | | F | 0.110 | 0.130 | 2.79 | 3.30 | | G | 0.540 | 0.575 | 13.72 | 14.61 | | Н | 0.025 | 0.035 | 0.64 | 0.89 | | J | 0.195 | 0.205 | 4.95 | 5.21 | | K | 0.095 | 0.105 | 2.41 | 2.67 | | L | 0.060 | 0.075 | 1.52 | 1.91 | | М | 0.085 | 0.095 | 2.16 | 2.41 | | N | 0.018 | 0.024 | 0.46 | 0.61 | | 0 | 0.178 | 0.188 | 4.52 | 4.78 | | Р | 0.045 | 0.060 | 1.14 | 1.52 | | R | 0.038 | 0.048 | 0.97 | 1.22 | ### Dimensions - TO- 263 (N-package) - D2-Pak Surface Mount | Dimension | Inches | | Millin | neters | |-----------|--------|-------|--------|--------| | Dimension | Min | Max | Min | Max | | А | 0.360 | 0.370 | 9.14 | 9.40 | | В | 0.380 | 0.420 | 9.65 | 10.67 | | С | 0.178 | 0.188 | 4.52 | 4.78 | | D | 0.025 | 0.035 | 0.63 | 0.89 | | Е | 0.048 | 0.055 | 1.22 | 1.40 | | F | 0.060 | 0.075 | 1.52 | 1.91 | | G | 0.095 | 0.105 | 2.41 | 2.67 | | Н | 0.083 | 0.093 | 2.11 | 2.36 | | J | 0.018 | 0.024 | 0.46 | 0.61 | | K | 0.090 | 0.110 | 2.29 | 2.79 | | S | 0.590 | 0.625 | 14.99 | 15.87 | | V | 0.035 | 0.045 | 0.89 | 1.14 | | U | 0.002 | 0.010 | 0.05 | 0.25 | | W | 0.040 | 0.070 | 1.02 | 1.78 | ### **Part Numbering System** ### **Part Marking System** TO-220 AB - (R Package) TO-263 (N Package) Date Code Marking Y:Year Code M: Month Code XXX: Lot Trace Code ### **Product Selector** | Part Number | Voltage | Gate Sensitivity | Туре | Package | | |----------------|---------|------------------|--------------|----------|--| | rait ivuilibei | 400V | Gate Sensitivity | Туре | r ackage | | | HS4040RAQ | X | 15-35 | Standard SCR | TO-220AB | | | HS4040NAQ | X | 15-35 | Standard SCR | TO-263 | | | HS4040RAQ2 | X | 30-45 | Standard SCR | TO-220AB | | | HS4040NAQ2 | X | 30-45 | Standard SCR | TO-263 | | | HS4040RAQ3 | X | 38-65 | Standard SCR | TO-220AB | | | HS4040NAQ3 | X | 38-65 | Standard SCR | TO-263 | | ### **Packing Options** | Part Number | Marking | Weight | Packing Mode | Base Quantity | |--------------|------------|--------|------------------|-------------------| | HS4040RAQTP | HS4040RAQ | 2.2g | Tube | 500 (50 per tube) | | HS4040RAQ2TP | HS4040RAQ2 | 2.2g | Tube | 500 (50 per tube) | | HS4040RAQ3TP | HS4040RAQ3 | 2.2g | Tube | 500 (50 per tube) | | HS4040NAQRP | HS4040NAQ | 1.6g | Embossed Carrier | 500 | | HS4040NAQ2RP | HS4040NAQ2 | 1.6g | Embossed Carrier | 500 | | HS4040NAQ3RP | HS4040NAQ3 | 1.6g | Embossed Carrier | 500 | ### Reel Pack (RP) for TO-263 Embossed Carrier Specifications ### Meets all EIA-481-2 Standards