imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HSCH-53xx Series

Beam Lead Schottky Diodes for Mixers and Detectors (1-26 GHz)

Description

These beam lead diodes are constructed using a metalsemiconductor Schottky barrier junction. Advanced epitaxial techniques and precise process control insure uniformity and repeatability of this planar passivated microwave semiconductor. A nitride passivation layer provides immunity from contaminants which could otherwise lead to I_R drift.

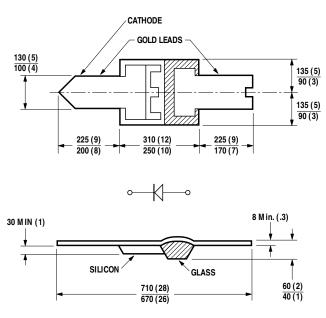
The Avago beam lead process allows for large beam anchor pads for rugged construction (typical 6 gram pull strength) without degrading capacitance.

Applications

The beam lead diode is ideally suited for use in stripline or microstrip circuits. Its small physical size and uniform dimensions give it low parasitics and repeatable RF characteristics through K-band.

The basic medium barrier devices in this family are DC tested HSCH-5310 and -5312. Equivalent low barrier devices are HSCH-5330 and -5332. Batch matched versions are available as HSCH-5331.

The HSCH-5340 is selected for applications requiring guaranteed RF-tested performance up to 26 GHz. The HSCH-5314 is rated at 7.2 dB maximum noise figure at 16 GHz.


Assembly Techniques

Thermocompression bonding is recommended. Welding or conductive epoxy may also be used. For additional information, see Application Note 979, *The Handling and Bonding of Beam Lead Devices Made Easy*, or Application Note 993, *Beam Lead Device Bonding to Soft Substances*.

Features

- Platinum tri-metal system
 High temperature stability
- Silicon nitride passivation Stable, reliable performance
- Low noise figure Guaranteed 7.5 dB at 26 GHz
- High uniformity Tightly controlled process insures uniform RF characteristics
- Rugged construction
 4 grams minimum lead pull
- Low capacitance 0.10 pF max. at 0 V
- Polyimide scratch protection

Outline 07

DIM ENSIONS IN μ m (1/ 1000 inch)

Maximum Ratings

Pulse Power Incident at $T_A = 25^{\circ}C$	
Pulse Width = 1 ms , Du = 0.001	
CW Power Dissipation at $T_A = 25^{\circ}C$	
Measured in an infinite heat sink derated	linearly
to zero at maximum rated temperature	
T _{OPR} – Operating Temperature Range	65°C to +175 °C
T _{STG} – Storage Temperature Range	$-65^{\circ}C$ to $+200^{\circ}C$
Minimum Lead Strength	4 grams pull on any lead
Diode Mounting Temperature	+350°C for 10 sec. max.

These diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.

Part Number	Part Noise Number Figure	Noise	l _F Impedance Ζ _{IF} (Ω)		Max. SWR	Min. Break- down Voltage V _{BR} (V)	M ax. Dynamic Resis- tance R _D (Ω)	M ax. Total Capaci- tance C _T (pF)	M ax. Forward Voltage V _F (mV)	M ax. Leakage Current I _R (nA)
		Min.	Max.							
5314	Medium	7.2 at 16 GHz	200	400	1.5:1	4	16	0.15	500	100
5340	Low	7.5 at 26 GHz	150	350			20	0.10	375	400
Test Conditions		$\begin{array}{c c c c c c c c c c c c c c c c c c c $				I _R ≤10 μA	I _F = 5 mA	V _R = 0 V f = 1 M Hz	I _F = 1 mA	V _R = 1 V

Table IA. Electrical Specifications for RF Tested Diodes at $\rm T_A$ = $\,25^{\circ}\rm C$

*Minimum batch size 20 units.

Note: 1. $C_T = C_J + 0.02 \text{ pF}$ (fringing cap).

Table IB. Electrical Specifications for DC Tested Diodes at T_{A} = $\,25^{\circ}C$

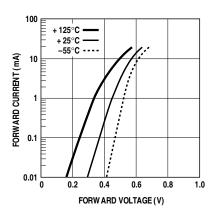
Part Number HSCH-	Batch* M atched HSCH-	Barrier	M inimum Breakdow n Voltage V _{BR} (V)	M aximum Dynamic Resistance R _D (Ω)	M aximum Total Capacitance C _T (pF)	M aximum Forw ard Voltage V _F (mV)	M aximum Leakage Current I _R (nA)
5312 5310		Medium	4	16 20	0.15 0.10	500	100
5332 5330	5331	Low	4	16 20	0.15 0.10	375	400
Test Conditions	∆V _F ≤15 mV @5 mA		I _R ≤10 μA	I _F = 5 mA	V _R = 0 V f = 1 M Hz	I _F = 1 mA	V _R = 1 V

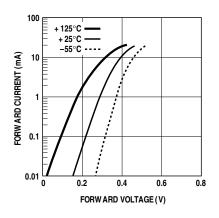
*Minimum batch size 20 units.

Typical Detector Characteristics at $T_{\!A}$ = $25^\circ C$

Medium Barrier and Low Barrier (DC Bias)

Parameter	Symbol	Typical Value	Units	Test Conditions
Tangential Sensitivity	TSS	-54	dBm	20 μ A Bias, R _L = 100 k Ω Video Bandwidth = 2 MHz
Voltage Sensitivity	γ	6.6	mV/ μW	f = 10 GHz
Video Resistance	R _v	1400	Ω	


Low Barrier (Zero Bias)


Parameter	Symbol	Typical Value	Units	Test Conditions
Tangential Sensitivity	TSS	-44	dBm	Zero Bias, $R_L = 10 M \Omega$ Video Bandwidth = 2 M Hz
Voltage Sensitivity	γ	10	mV/ μW	f = 10 GHz
Video Resistance	R _v	1.8	MΩ	

SPICE Parameters

Parameter	Units	HSCH-5312 HSCH-5314	HSCH-5310	HSCH-5330 HSCH-5340	HSCH-5332
B _V	V	5	5	5	5
C ^{JO}	pF	0.13	0.09	0.09	0.13
E _G	eV	0.69	0.69	0.69	0.69
I _{BV}	A	10E-5	10E-5	10E-5	10E-5
I _S	A	3 x 10E-10	3 x 10E-10	4 x 10E-8	4 x 10E-8
Ν		1.08	1.08	1.08	1.08
R _s	Ω	9	13	13	9
P _B	V 0.65		0.65	0.5	0.5
P _T		2	2	2	2
М		0.5	0.5	0.5	0.5

Typical Parameters

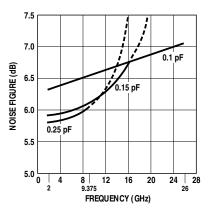


Figure 1. Typical forward characteristics for medium barrier beam lead diodes. HSCH-5310 series.

Figure 2. Typical forward characteristics for low barrier beam lead diodes. HSCH-5330, -5340 series.

Figure 3. Typical noise figure vs. frequency.

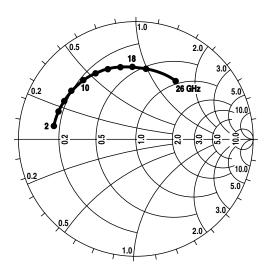


Figure 4. Typical admittance characteristics with 1 mA self bias. HSCH-5340.

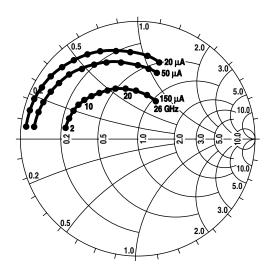


Figure 5. Typical admittance characteristics with external bias. HSCH-5340.

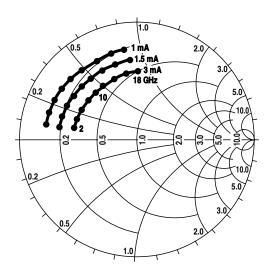


Figure 6. Typical admittance characteristics with self bias. HSCH-5314.

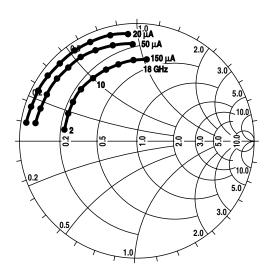
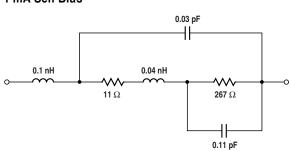
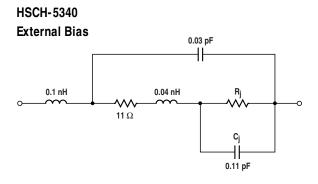
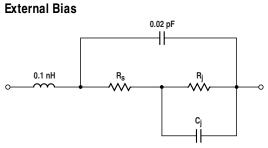



Figure 7. Typical admittance characteristics with external bias. HSCH-5314.

M odels for Each Beam Lead Schottky Diode


HSCH-5340 1 mA Self Bias

Other HSCH-53xx



	1.0 mA Self Bias			1.5	mA Self Bi	as	3.0 mA Self Bias		
Part Numbers	R_S (Ω)	R _j (Ω)	C _j (pF)	R_S (Ω)	R j (Ω)	C _j (pF)	R_S (Ω)	R _j (Ω)	C _j (pF)
HSCH-5314	5.0	393	0.11	5.2	232	0.11	5.0	150	0.12

	20 μA DC Bias		50 μ Α Ε	OC Bias	150 μA DC Bias		
Part Numbers	R _j (Ω)	C _j (pF)	R _j (Ω)	C _j (pF)	R _j (Ω)	C _j (pF)	
HSCH-5340	1300	0.09	560	0.09	187	0.10	

Other HSCH-53xx

	20 μADC Bias			50 μADC Bias			150 μADC Bias		
Part Numbers	R_S (Ω)	R j (Ω)	C _j (pF)	R_S (Ω)	R j (Ω)	C _j (pF)	R_S (Ω)	R j (Ω)	C _j (pF)
HSCH-5314	2.8	1300	0.11	4.7	520	0.12	2.7	180	0.13

For product information and a complete list of distributors, please go to our website: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2006 Avago Technologies Pte. All rights reserved. Obsoletes AV01-0127EN AV01-0484EN September 21, 2006

