# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



## Data Sheet



## Description

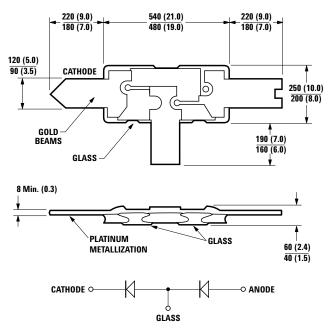
These dual beam lead diodes are constructed using a metal-semiconductor Schottky barrier junction. Advanced epitaxial techniques and precise process control insure uniformity and repeatability of this planar passivated microwave semiconductor. A nitride passivation layer provides immunity from contaminants which could otherwise lead to IR drift.

The Avago beam lead process allows for large beam anchor pads for rugged construction (typical 6 gram pull strength) without degrading capacitance.

## **Applications**

The beam lead diode is ideally suited for use in stripline or microstrip or coplanar waveguide circuits. Its small physical size and uniform dimensions give it low parasitics and repeatable RF characteristics through K-band.

These dual beam leads are intended for use in balanced mixers and in even harmonic anti-parallel pair mixers. By using several of these devices in the proper configuration it is easy to assemble bridge quads, star quads, and ring quads for Class I, II, or III type double balanced mixers.


## **Assembly Techniques**

Thermocompression bonding is recommended. Welding or conductive epoxy may also be used. For additional information see Application Note 979, "The Handling and Bonding of Beam Lead Devices Made Easy," or Application Note 993, "Beam Lead Device Bonding to Soft Substrates."

## Features

- Monolithic Pair: Closely Matched Electrical Parameters
- Low Capacitance: 0.1 pF Maximum at 0 Volts
- Low Noise Figure: Typical 7.5 dB at 26 GHz
- Rugged Construction: 4 Grams Minimum Lead Pull
- Platinum Tri-Metal System: High Temperature Stability
- Polyimide Scratch Protection
- Silicon Nitride Passivation: Stable, Reliable Performance

## Outline 04B



DIMENSIONS IN m (1/1000 inch)

| Maximum Ratings (for Each Diode)                                                                                |                          |
|-----------------------------------------------------------------------------------------------------------------|--------------------------|
| Pulse Power Incident at $T_A = 25^{\circ}C$<br>Pulse Width = 1 $\mu$ s, Du = 0.001                              | 1 W                      |
| CW Power Dissipation at $T_A = 25^{\circ}C$<br>Measured in an infinite heat sink derated linearly to zero at ma |                          |
| T <sub>OPR</sub> – Operating Temperature Range                                                                  | 65°C to +175 °C          |
| T <sub>STG</sub> – Storage Temperature Range                                                                    | 65°C to +200°C           |
| Minimum Lead Strength                                                                                           | 4 grams pull on any lead |
| Diode Mounting Temperature                                                                                      | 350°C for 10 sec. max.   |

These diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.

| Part<br>Number<br>HSCH- <sup>[1]</sup> | Barrier | Minimum<br>Breakdown<br>Voltage<br>V <sub>BR</sub> (V) | Maximum<br>Dynamic<br>Resistance<br>R <sub>D</sub> (Ω) | <b>Max.</b><br>Δ <b>R<sub>D<br/>(Ω)</sub></b> | Maximum<br>Total<br>Capacitance<br>C <sub>T</sub> (pF) | Мах.<br>∆С <sub>т</sub><br>(рF) | Maximum<br>Forward<br>Voltage<br>V <sub>F</sub> (mV) | Max.<br>△V <sub>F</sub><br>(mV) | Max.<br>I <sub>R</sub><br>(nA) |
|----------------------------------------|---------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|---------------------------------|------------------------------------------------------|---------------------------------|--------------------------------|
| 5512                                   | Medium  | 4                                                      | 16                                                     | 3                                             | 0.15                                                   | 0.03                            | 500                                                  | 10                              | 100                            |
| 5531                                   | Low     |                                                        | 20                                                     | 3                                             | 0.10                                                   | 0.02                            | 375                                                  |                                 | 400                            |
| Test Conditi                           | ons     | $I_R = 10 \ \mu A$                                     | l <sub>F</sub> = 5 n                                   | nA                                            | $V_{R} = 0 V, f =$                                     | 1 MHz                           | I <sub>F</sub> = 1                                   | mA                              | $V_{R} = 1$                    |

Electrical Specifications for DC Tested Diodes at  $T_{\rm A}$  = 25  $^{\circ}{\rm C}$ 

#### Note:

1. Standard Hi-Rel program available on HSCH-5531. Others are available upon request.

## Typical Detector Characteristics at $T_A = 25^{\circ}C$

#### Medium Barrier and Low Barrier (DC Bias)

| Parameter              | Symbol         | Typical Value | Units | Test Conditions                                        |
|------------------------|----------------|---------------|-------|--------------------------------------------------------|
| Tangential Sensitivity | TSS            | -55           | dBm   | 20 $\mu$ A Bias, Zero Bias, P <sub>in</sub> = -40 dBm, |
| Voltage Sensitivity    | γ              | 9.0           | mV/μW | $R_L = 100 \text{ K}\Omega$ , Video Bandwidth = 2 MHz  |
| Video Resistance       | R <sub>v</sub> | 1350          | Ω     | f = 10 GHz                                             |

## Low Barrier (Zero Bias)

| Parameter              | Symbol         | Typical Value | Units | Test Conditions                                  |
|------------------------|----------------|---------------|-------|--------------------------------------------------|
| Tangential Sensitivity | TSS            | -46           | dBm   | Zero Bias, Zero Bias, P <sub>in</sub> = -30 dBm, |
| Voltage Sensitivity    | γ              | 17            | mV/μW | $R_L = 10 M\Omega$ , Video Bandwidth = 2 MHz     |
| Video Resistance       | R <sub>V</sub> | 1.4           | MΩ    | f = 10  GHz                                      |

2

| SPI | CE | Pai | ram | ete | ers |
|-----|----|-----|-----|-----|-----|
|     | ~  |     |     |     |     |

| Parameter       | Units | HSCH-5512  | HSCH-5531 |
|-----------------|-------|------------|-----------|
| B <sub>V</sub>  | V     | 5          | 5         |
| C <sub>J0</sub> | pF    | 0.13       | 0.09      |
| E <sub>G</sub>  | eV    | 0.69       | 0.69      |
| I <sub>BV</sub> | А     | 10E-5      | 10E-5     |
| ls              | А     | 3 x 10E-10 | 4 x 10E-8 |
| N               |       | 1.08       | 1.08      |
| R <sub>s</sub>  | Ω     | 9          | 13        |
| P <sub>B</sub>  | V     | 0.65       | 0.5       |
| P <sub>T</sub>  |       | 2          | 2         |
| M               | 0.5   | 0.5        |           |
|                 |       |            |           |

**Typical Parameters** 

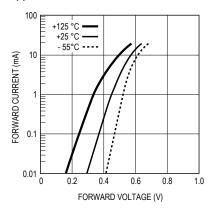



Figure 1. Typical forward characteristics for medium barrier beam lead diodes. HSCH-5512.

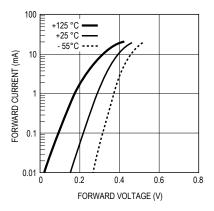



Figure 2. Typical forward characteristics for low barrier beam lead diodes. HSCH-5531.

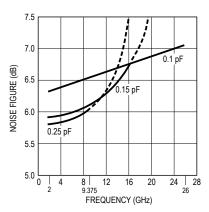



Figure 3. Typical noise figure vs. frequency.

## Typical Parameters, continued

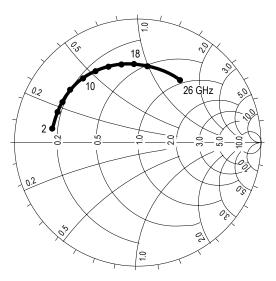



Figure 4. Typical Admittance Characteristics with 1 mA

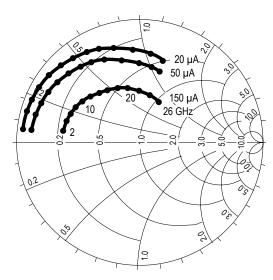



Figure 5. Typical Admittance Characteristics with

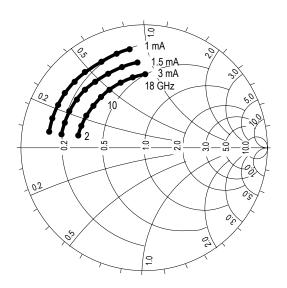
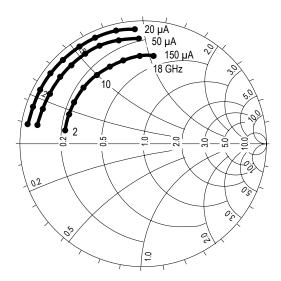
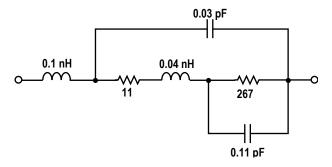


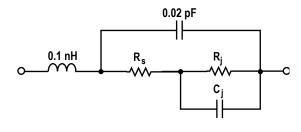

Figure 6. Typical Admittance Characteristics with Self Bias. HSCH-5512.





Figure 7. Typical Admittance Characteristics with External Bias.

4

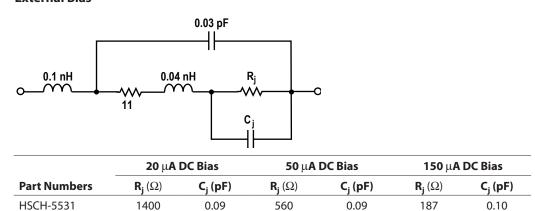
## Models for Each Beam Lead Schottky Diode


HSCH -5531

1 mA Self Bias

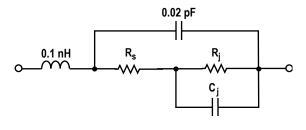


## HSCH-5512


Self Bias



|             | 1.0                       | 1.0 mA Self Bias                  |       |                                      | 1.5 mA Self Bias       |        |                                   | 3.0 mA Self Bias                  |        |  |
|-------------|---------------------------|-----------------------------------|-------|--------------------------------------|------------------------|--------|-----------------------------------|-----------------------------------|--------|--|
| Part Number | <b>R</b> <sub>1</sub> (Ω) | $\mathbf{R_2}\left(\Omega\right)$ | C(pF) | $\mathbf{R}_{1}\left( \Omega\right)$ | $\mathbf{R_2}(\Omega)$ | C (pF) | $\mathbf{R_1}\left(\Omega\right)$ | $\mathbf{R_2}\left(\Omega\right)$ | C (pF) |  |
| HSCH-5512   | 5.0                       | 393                               | 0.11  | 5.2                                  | 232                    | 0.11   | 5.0                               | 150                               | 0.12   |  |


## Models for Each Beam Lead Schottky Diode, continued

HSCH -5531 External Bias



## HSCH-5512

**External Bias** 



|              | <b>20</b> μ <b>Α DC Bias</b>      |                                   |                     | <b>50</b> μ <b>Α DC Bias</b> |                                   |                     | <b>150</b> μ <b>Α DC Bias</b> |                           |                     |
|--------------|-----------------------------------|-----------------------------------|---------------------|------------------------------|-----------------------------------|---------------------|-------------------------------|---------------------------|---------------------|
| Part Numbers | $\mathbf{R}_{\mathbf{S}}(\Omega)$ | $\mathbf{R}_{\mathbf{j}}(\Omega)$ | C <sub>j</sub> (pF) | <b>R</b> <sub>S</sub> (Ω)    | $\mathbf{R}_{\mathbf{j}}(\Omega)$ | C <sub>j</sub> (pF) | <b>R<sub>s</sub></b> (Ω)      | <b>R</b> <sub>j</sub> (Ω) | C <sub>j</sub> (pF) |
| HSCH-5512    | 2.8                               | 1240                              | 0.11                | 4.7                          | 550                               | 0.12                | 2.7                           | 180                       | 0.13                |

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved. Obsoletes 5965-8850EN AV01-0595EN - October 19, 2006

