: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HSMx-A2-xx-xxxxx Bi-Color
HSMx-A3xx-xxxxx Tri-Color
Surface Mount LED Indicators, PLCC-4 SMT LEDS

Data Sheet

Description

This family of SMT LEDs is packaged in the industry standard PLCC-4 package. These SMT LEDs have high reliability performance and are designed to work under a wide range of environmental conditions. This high reliability feature makes them ideally suited to be used under harsh interior automotive as well as interior signs application conditions.
To facilitate easy pick and place assembly, the LEDs are packed in EIA-compliant tape and reel. Every reel will be shipped in single intensity and color bin, except red color to provide close uniformity.

These LEDs are compatible with IR and TTW solder reflow process.

This super wide viewing angle at 120° together with the built in reflector pushing up the intensity of the light output makes these LED suitable to be used in the interior electronics signs. The flat top emitting surface makes it easy for these LEDs to mate with light pipes. This is suitable for general backlighting in automotive interior, office equipment, industrial equipment, and home appliances.

Features

- Industry Standard PLCC-4 package (Plastic Leaded Chip Carrier)
- High reliability LED package due to enhanced silicone resin material
- High brightness using AllnGaP and InGaN dice technologies
- Available in full selection of colors
- Super wide viewing angle at 120°
- Available in 8 mm carrier tape on 7-inch reel
- Compatible with IR soldering process

Applications

- Electronic signs and signals
- Interior full color sign
- Variable message sign
- Interior automotive
- Instrument cluster backlighting
- Central console backlighting
- Cabin backlighting
- Office automation, home appliances, industrial equipment
- Front panel backlighting
- Display backlighting

Package Dimensions

Tri Color	
1	Cathode (Color 1)
2	Common Anode
3	Cathode (Color 3)
4	Cathode (Color 2)
Bi Color	
1	Cathode (Color 1)
2	Anode (Color 1)
3	Cathode (Color 2)
4	Anode (Color 2)

Device Selection Guide

Bi Color

Part Number	Color 1	Color 2
HSMF-A201- xxxxx	GaP Red	GaP Yellow Green
HSMF-A202- xxxxx	GaP Red	GaP Yellow
HSMF-A203- xxxxx	GaP Red	GaP Emerald Green
HSMF-A204- xxxxx	GaP Orange	GaP Yellow Green
HSMF-A205- xxxxx	GaP Orange	GaP Emerald Green
HSMF-A206- xxxxx	GaP Yellow	GaP Yellow Green
HSMF-A211- xxxxx	AlGaAs Red	GaP Yellow Green
HSMF-A212- xxxxx	AlGaAs Red	GaP Yellow
HSMF-A222- xxxxx	AllnGaPRed	AllnGaP Amber
HSMF-A226- xxxxx	AllnGaP Amber	AllnGaP Yellow Green

Part Number	Color 1			Color 2		
	Min. Iv @ 20 mA		Typical Iv @ 20 mA (mcd)	Min. Iv @ 20 mA		Typical Iv @ 20 mA (mcd)
	Bin ID	(mcd)		Bin ID	(mcd)	
HSMF-A201-A00J1	K2	9.0	16.0	L1	11.2	20.0
HSMF-A202-A00J1	K2	9.0	16.0	K1	7.2	12.0
HSMF-A203-A00J1	K2	9.0	16.0	J1	4.5	8.0
HSMF-A204-A00J1	K2	9.0	16.0	L1	11.2	20.0
HSMF-A205-A00J1	K2	9.0	16.0	J1	4.5	8.0
HSMF-A206-A00J1	K2	9.0	16.0	L1	11.2	20.0
HSMF-A211-A00J1	L2	14.0	25.0	L1	11.2	20.0
HSMF-A212-A00J1	L2	14.0	25.0	K1	7.2	12.0
HSMF-A222-A00J1	P1	45.0	80.0	P1	45.0	80.0
HSMF-A226-A00J1	P2	56.0	100.0	M2	22.4	60.0

Note:

1. The luminous intensity lv , is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be aligned with this axis.
2. Iv tolerance $= \pm 10 \%$.

Tri Color

Part Number	Color 1	Color 2	Color 3
HSMF-A341-xxxxx	AllnGaP Red	InGaN Green	InGaN Blue

Part Number	Color 1			Color 2			Color 3		
	Min. Iv @ 20 mA		Typical Iv @ 20 mA (mcd)	Min. Iv @ 20 mA		Typical Iv @ 20 mA (mcd)	Min. Iv @ 20 mA		Typical Iv @ 20 mA (mcd)
	Bin ID	(mcd)		Bin ID	(mcd)		Bin ID	(mcd)	
	K2	9.0	13.0	L2	14.0	20.0	K2	9.2	10.0
	P1	45.0	80.0	R1	112.5	160.0	K2	9.2	10.0
	P1	45.0	80.0	R1	112.5	160.0	K2	9.2	10.0
HSMF-A341-A00J1	P1	45.0	80.0	R1	112.5	160.0	N1	28.5	40.0
	P1	45.0	80.0	R1	112.5	160.0	N1	28.5	40.0

Note:

1. The luminous intensity $I v$, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be aligned with this axis.
2. Iv tolerance $= \pm 10 \%$.

Part Numbering System

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameters	AllnGaP				
	GaP	AIGaAs	Red, Amber	Yellow Green	GaN/InGaN
DC Forward Current ${ }^{[1]}$	30 mA	30 mA	$30 \mathrm{~mA}{ }^{[3,4]}$	$20 \mathrm{~mA}{ }^{[4]}$	20 mA
Peak Forward Current ${ }^{[2]}$	100 mA				
Power Dissipation	78 mW	78 mW	72 mW	48 mW	120 mW
Reverse Voltage			5 V		
Junction Temperature			$110^{\circ} \mathrm{C}$		
Operating Temperature			$-55^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	
Storage Temperature			$-55^{\circ} \mathrm{C}$ t	$0^{\circ} \mathrm{C}$	
Notes:					
1. Derate linearly as shown in figure 4.					
2. Duty factor $=10 \%$, Frequency $=1 \mathrm{kHz}$.					
3. Drive Current between 10 mA and 30 mA are recommended for best long term performance.					

Optical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Color	Peak Wavelength $\lambda_{\text {PEAK }}$ (nm) Typ.	Dominant Wavelength $\lambda_{D}(n m)^{[1]}$ Typ.	Viewing Angle $2 \theta_{1 / 2}$ (Degrees) ${ }^{[2]}$ Typ.	Luminous Efficacy η_{v} (Im/W) ${ }^{[3]}$ Typ.	Luminous Intensity/ Total Flux $\mathrm{I}_{\mathrm{v}}(\mathrm{mcd}) / \Phi_{\mathrm{v}}(\mathrm{mlm})$ Typ.
GaP Red	635	626	120	120	0.45
AlGaAs Red	645	637	120	63	0.45
AllnGaP Red	635	626	120	150	0.45
AllnGaP Red Orange	621	615	120	240	0.45
GaP Orange	600	602	120	380	0.45
AllnGaP Amber	592	590	120	480	0.45
GaP Yellow	583	585	120	580	0.45
AllnGaP Amber	592	590	120	480	0.45
GaP Yellow Green	565	569	120	590	0.45
GaP Emerald Green	558	560	120	650	0.45
InGaN Green	523	525	120	500	0.45
InGaN Blue	468	470	120	75	0.45
GaN Blue	428	462	120	65	0.45
AllnGaP Yellow Green	575	571	120	620	0.45

Notes:

1. The dominant wavelength, λ_{D}, is derived from the CIE Chromaticity Diagram and represents the color of the device.
2. $\theta_{1 / 2}$ is the off-axis angle where the luminous intensity is $1 / 2$ the peak intensity.
3. Radiant intensity, I_{e} in watts/steradian, may be calculated from the equation $I_{e}=I_{V} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Dice Technology	Forward Voltage V_{F} (Volts) @ $I_{F}=\mathbf{2 0 m A}$		Reverse Voltage $V_{R} @ 100 \mu A$	Reverse Voltage $V_{R} @ 10 \mu A$
	Typ.	Max.	Min.	Min.
GaP	2.2	2.6	5	-
AS AIGaAs	1.9	2.6	5	-
AllnGaP	1.9	2.4	5	-
GaN Blue	3.9	4.3	-	5
InGaN	3.4	4.05	-	5

Figure 1. Relative intensity vs. wavelength

Figure 2. Forward current vs. forward voltage

Figure 3. Relative intensity vs. forward voltage

Figure 4a. Maximum forward current vs. ambient temperature. Derated based on $\mathrm{T} M \mathrm{MAX}=110^{\circ} \mathrm{C}$, $R \theta_{\mathrm{JA}}=500^{\circ} \mathrm{C} / \mathrm{W}$ (1 chip on)

Figure 4b. Maximum forward current vs. ambient temperature. Derated based on $\mathrm{J}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}$, $R \theta_{\mathrm{JA}}=700^{\circ} \mathrm{C} / \mathrm{W}$ (3 chip on)

Figure 5. Dominant wavelength vs. forward current - InGaN

Figure 6. Radiation pattern

Figure 7. Recommended SnPb reflow soldering profile

Note: For detail information on reflow soldering of Avago surface mount LEDs, do refer to Avago Application Note AN 1060 Surface Mounting SMT LED Indicator Components.

Figure 8. Recommended soldering pad pattern

Figure 9. Tape leader and trailer dimension

Figure 10. Tape leader and trailer dimension

Figure 11. Reel dimension

Figure 12. Reeling Orientation

Figure 13. Recommended Pick and Place Nozzle Size

Handling Precaution

The encapsulation material of the product is made of silicone for better reliability of the product. As silicone is a soft material, please do not press on the silicone or poke a sharp object onto the silicone. These might damage the product and cause premature failure. During assembly of handling, the unit should be held on the body only. Please refer to Avago Application Note AN 5288 for detail information.

Moisture Sensitivity

This product is qualified as Moisture Sensitive Level 2a per Jedec J-STD-020. Precautions when handling this moisture sensitive product is important to ensure the reliability of the product. Do refer to Avago Application Note AN5305 Handling of Moisture Sensitive Surface Mount Devices for details.

A. Storage before use

- Unopen moisture barrier bag (MBB) can be stored at $<40^{\circ} \mathrm{C} / 90 \% \mathrm{RH}$ for 12 months. If the actual shelf life has exceeded 12 months and the HIC indicates that baking is not required, then it is safe to reflow the LEDs per the original MSL rating.
- It is not recommended to open the MBB prior to assembly (e.g. for IQC).
B. Control after opening the MBB
- The humidity indicator card (HIC) shall be read immediately upon opening of MBB.
- The LEDs must be kept at $<30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$ at all time and all high temperature related process including soldering, curing or rework need to be completed within 672 hours.
C. Control for unfinished reel
- For any unuse LEDs, they need to be stored in sealed MBB with desiccant or desiccator at $<5 \%$ RH.
D. Control of assembled boards
- If the PCB soldered with the LEDs is to be subjected to other high temperature processes, the PCB need to be stored in sealed MBB with desiccant or desiccator at $<5 \%$ RH to ensure no LEDs have exceeded their floor life of 672 hours.
E. Baking is required if:
- " 10% " or" 15% " HIC indicator turns pink.
- The LEDs are exposed to condition of $>30^{\circ} \mathrm{C} / 60 \%$ RH at any time.
- The LEDs floor life exceeded 672 hours.

Recommended baking condition: $60 \pm 5^{\circ} \mathrm{C}$ for 20 hours.

Iv Bin Select ($\mathrm{X}_{5} \mathrm{X}_{6}$)		
Individual reel will contain parts from 1 half bin only.		
X_{5}	Min. Iv Bin Selection	
For		
HSMF-A201-xxxxx		
HSMF-A204-xxxxx		
HSMF-A206-xxxxx		
	Minimum Intensity Bin	
	Color 1 (Red/Yellow/ Orange)	Color 2 (Green)
A	K2	L1
B	K2	L2
C	K2	M1
D	K2	M2
E	K2	N1
F	L1	L1
G	L1	L2
H	L1	M1
J	L1	M2
K	L1	N1
L	L2	L1
M	L2	L2
N	L2	M1
P	L2	M2
Q	L2	N1
R	M1	L1
S	M1	L2
T	M1	M1
U	M1	M2
V	M1	N1
W	M2	L1
X	M2	L2
Y	M2	M1
Z	M2	M2
1	M2	N1

For HSMF-A202-xxxxx			For HSMF-A203-xxxxx HSMF-A205-xxxxx		
	Minimum Intensity Bin				
	Color 1 (Red)	Color 2 (Yellow)		Minimum Intensity Bin	
				Color 1	Color 2
A	K2	K1		(Red/Orange)	(Green)
B	K2	K2	A	K2	J1
C	K2	L1	B	K2	J2
D	K2	L2	C	K2	K1
E	K2	M1	D	K2	K2
F	L1	K1	E	K2	L1
G	L1	K2	F	L1	J1
H	L1	L1	G	L1	J2
J	L1	L2	H	L1	K1
K	L1	M1	J	L1	K2
L	L2	K1	K	L1	L1
M	L2	K2	\underline{L}	L2	J1
N	L2	L1	M	L2	J2
P	L2	L2	N	L2	K1
Q	L2	M1	P	L2	K2
R	M1	K1	Q	L2	L1
S	M1	K2	R	M1	J1
T	M1	L1	S	M1	J2
U	M1	L2	T	M1	K1
V	M1	M1	U	M1	K2
W	M2	K1	V	M1	L1
X	M2	K2	W	M2	J1
Y	M2	L1	\underline{X}	M2	J2
Z	M2	L2	Y	M2	K1
1	M2	M1	Z	M2	K2
			1	M2	L1

For HSMF-A211-xxxxx		
	Minimum Intensity Bin	
	Color 1 (Red)	Color 2 (Green)
A	L2	L1
B	L2	L2
C	L2	M1
D	L2	M2
E	L2	N1
F	M1	L1
G	M1	L2
H	M1	M1
J	M1	M2
K	M1	N1
\underline{L}	M2	L1
M	M2	L2
N	M2	M1
P	M2	M2
Q	M2	N1
R	N1	L1
S	N1	L2
T	N1	M1
U	N1	M2
V	N1	N1
W	N2	L1
X	N2	L2
Y	N2	M1
Z	N2	M2
1	N2	N1

For HSMF-A212-xxxxx		
	Minimum	
	Color 1 (Red)	Color 2 (Yellow)
A	L2	K1
B	L2	K2
C	L2	L1
D	L2	L2
E	L2	M1
F	M1	K1
G	M1	K2
H	M1	L1
J	M1	L2
K	M1	M1
L	M2	K1
M	M2	K2
N	M2	L1
P	M2	L2
Q	M2	M1
R	N1	K1
S	N1	K2
T	N1	L1
U	N1	L2
V	N1	M1
W	N2	L2
X	N2	M1
Y	N2	N2
Z	N2	

For HSMF-A222-xxxxx		
	Minimum Intensity Bin	
	Color 1 (Red)	Color 2 (Amber)
A	P1	P1
B	P1	P2
C	P1	Q1
D	P1	Q2
E	P1	R1
F	P2	P1
G	P2	P2
H	P2	Q1
J	P2	Q2
K	P2	R1
L	Q1	P1
M	Q1	P2
N	Q1	Q1
P	Q1	Q2
Q	Q1	R1
R	Q2	P1
S	Q2	P2
T	Q2	Q1
U	Q2	Q2
V	Q2	R1
W	R1	P1
\underline{X}	R1	P2
Y	R1	Q1
Z	R1	Q2
1	R1	R1
2	R2	P1
3	R2	P2
4	R2	Q1
5	R2	Q2
6	R2	R1

For HSMF-A341-xxxxx			
Minimum Intensity Bin			
	Color 1 (Red/Red Orange)	Color 2 (Green)	Color 3 (Blue)
A	P1	R1	N1
B	P1	R1	N2
C	P1	R1	P1
D	P1	R2	N1
E	P1	R2	N2
F	P1	R2	P1
G	P1	S1	N1
H	P1	S1	N2
J	P1	S1	P1
K	P2	R1	N1
L	P2	R1	N2
M	P2	R1	P1
N	P2	R2	N1
P	P2	R2	N2
Q	P2	R2	P1
R	P2	S1	N1
S	P2	S1	N2
T	P2	S1	P1
U	Q1	R1	N1
V	Q1	R1	N2
W	Q1	R1	P1
X	Q1	R2	N1
Y	Q1	R2	N2
Z	Q1	R2	P1
1	Q1	S1	N1
2	Q1	S1	N2
3	Q1	S1	P1
4	Q2	R1	N1
5	Q2	R1	N2
6	Q2	R1	P1
7	Q2	R2	N1
8	Q2	R2	N2
9	Q2	R2	P1

Intensity Bin Limits

Bin ID	Min. (mcd)	Max. (mcd)
J1	4.50	5.60
J2	5.60	7.20
K1	7.20	9.00
K2	9.00	11.20
L1	11.20	14.00
L2	14.00	18.00
M1	18.00	22.40
M2	22.40	28.50
N1	28.50	35.50
N2	35.50	45.00
P1	45.00	56.00
P2	56.00	71.50
Q1	71.50	90.00
Q2	90.00	112.50
R1	112.50	140.00
R2	140.00	180.00
S1	180.00	224.00
S2	224.00	285.00
T1	285.00	355.00
T2	355.00	450.00
U1	450.00	560.00
U2	560.00	715.00
V1	715.00	900.00
V2	900.00	1125.00
Po	206	

Tolerance of each bin limit $= \pm 10 \%$.

Color Bin Select (X_{7})

Individual reel will contain parts from 1 full bin only.

X_{7}	Color Bin Combinations	
For		
HSMF-A202-xxxxx		
HSMF-A203-xxxxx		
HSMF-A212-xxxxx		
HSMF-A222-xxxxx		
	Color 1 (Red)	Color 2 (Emerald Green/ Yellow/Blue)
0	0	0
A	0	ABC
B	0	ABCD
C	0	ABCDE
D	0	BCD
E	0	BCDE
F	0	BCDEF
G	0	CDE
H	0	DEF
J	0	CDEF
K	0	AB
\underline{L}	0	BC
M	0	CD
N	0	DE
P	0	EF

Note: 0 represents full distribution.

For HSMF-A201-xxxxx HSMF-A211-xxxxx		
	Color 1 (Red)	Color 2 (Yellow Green)
0	0	0
A	0	EFG
B	0	FGH
C	0	EF
D	0	FG
E	0	GH

[^0]

For product information and a complete list of distributors, please go to our website: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. Obsoletes 5989-1210EN

[^0]: Note: 0 represents full distribution

