

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

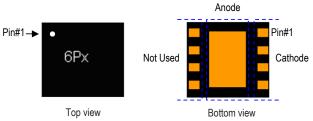
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HSMP-386J

High Power RF PIN Diode

AVAGO

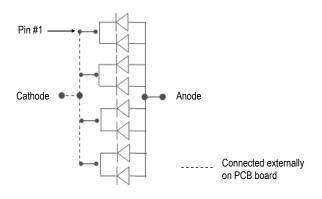

Data Sheet

Description

Avago Technologies' HSMP-386J is a High Power RF PIN Diode specifically design for high power handling and low distortion Transmit/Receive switching application. It is housed in QFN 2x2mm size package which is having good thermal resistance.

The unique with 8 dies in parallel configuration results to low IL performance and low series resistance. The HSMP-386J Power diode is built with match diode to ensure consistency in performance.

Package Marking & Orientation



Notes:

6P = Device Code

x = Month code indicates the month of manufacture

Circuit Diagram of HSMP-386J

Features

- High Power Surface Mount Package QFN 2x2
- Match Diode for Consistent Performance
- Low Bias Current Requirement
- Low Series Resistance
- Low Insertion Loss & High Isolation
- Better Thermal Conductivity for Higher Power Dissipation
- Low Failure in Time (FIT) Rate
- Lead-free Option Available
- MSL1 & Lead Free
- Tape & Reel Option Available

Specifications

- Low RS Switching typically 0.65Ω @ 100MHz., 50mA
- High Power Handling Up to 10W (40dBm) at 2GHz, 50mA

Application

 High Power Transmit / Receive Switch for Cellular Infrastructure and Two Way Radio

Table 1. Absolute Maximum Ratings [1] at $T_C = +25^{\circ}C$

Symbol	Parameter	Unit	Max Rating
I _F	Forward Current (1µs Pulse) per die [2]	Amp	1
P _{IV}	Peak Inverse Voltage	V	100
Tj	Junction Temperature	°C	150
T _{stg}	Storage Temperature	°C	-60 to 150
θ_{jc}	Thermal Resistance [3]	°C/W	45
DC P _{diss}	DC Power Dissipation [4]	W	2.0

Notes:

- 1. Operation in excess of any one of these conditions may result in permanent damage to the device.
- 2. Eight dice are connected in parallel for this device.
- 3. TC = +25°C, where TC is defined to be the temperature at the package pins where contact is made to the circuit board.
- 4. Maximum DC P_{diss} measured without RF input and maximum rating is base on device junction temperature.

$$P_{diss} = \frac{T \text{ (Max.Operating)} - 25 ^{\circ}\text{C}}{\text{Thermal Resistance}}$$

Table 2. Electrical Performance at $T_C = +25^{\circ}C$

	Minimum Breakdown Voltage V _{BR} (V)	Typical Forward Voltage V _f (V)	Maximum Series Resistance R _S (Ohm)	Maximum Total Capacitance C _T (pF)
	100	0.85	0.77	1.25
Test Conditions	$V_R = V_{BR}$ Measure $I_R \le 5uA$	$I_F = 50 \text{mA}$	I _F = 50 mA f = 100 MHz	$V_R = 50V$ f = 1MHz

Table 3. Typical Performance at $T_C = +25^{\circ}C$

	Series Resistance $R_S(\Omega)$	Carrier Lifetime (nS)	Reverse Recovery Time T _{rr} (nS)	Total Capacitance C _T (pF)
	0.65	260	130	0.75
Test Conditions	I _F = 50mA f = 100MHz	I _F = 50mA I _R = 100mA	$V_R = 5V$ $I_F = 50 \text{mA}$ $90\% \text{ Recovery}$	$V_R = 50V$ f = 1MHz

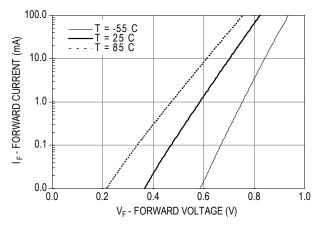


Figure 1. Forward Current vs. Forward Voltage

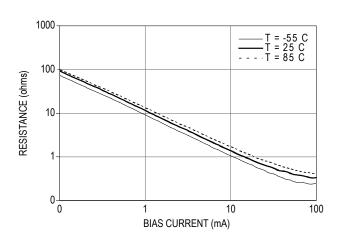


Figure 2. Typical RF Resistance vs. Forward Bias Current.

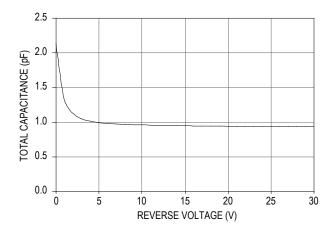
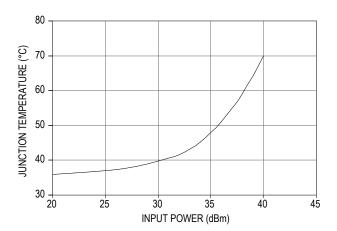
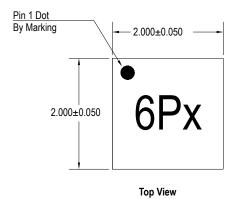
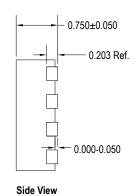
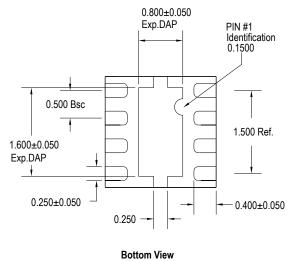
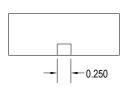


Figure 3. RF Capacitance vs. Reverse Bias Voltage

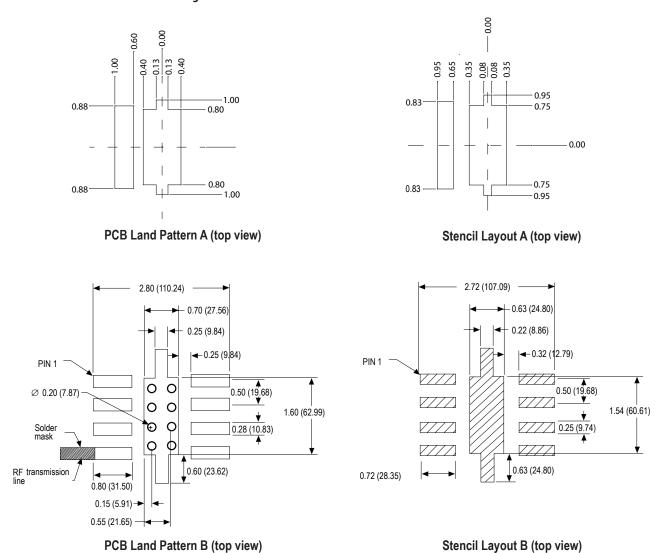




Figure 4. Input Power vs. Junction Temperature [1]


Notes:


- 1. Test conditions: f = 2.1GHz, $I_F = 50mA$
- 2. Typical values were derived using limited samples during initial product characterization and may not be representative of the overall distribution.

QFN 2x2 Package Dimension

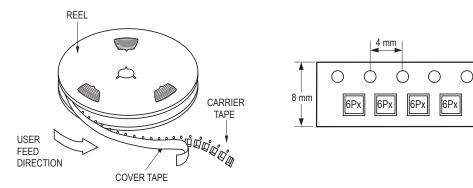


Top View

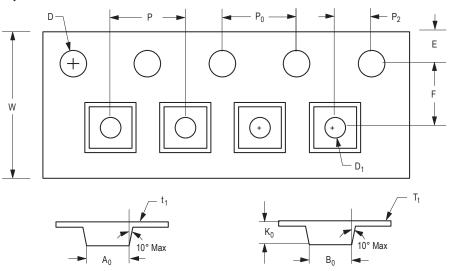
Note:

- 1. All dimensions in millimeters.
- Dimensions are inclusive of plating.
 Dimensions are exclusive of mold flash and metal burr.

PCB Land Pattern and Stencil Design


Note:

- 1. All dimensions in millimeters (mils).
- 2. For PCB land pattern B and stencil layout B, external trace is required to connect all cathode pads as one single pad.


Ordering Information

Part Number	No. of Devices	Container
HSMP-386J-TR1G	3000	7" Reel
HSMP-386J-TR2G	10000	13" Reel
HSMP-386J-BLKG	100	antistatic bag

Device Orientation

Tape Dimensions

DESCRIPTION		SYMBOL	SIZE (mm)	SIZE (inches)
CAVITY	LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER	A ₀ B ₀ K ₀ P D ₁	2.30 ± 0.05 2.30 ± 0.05 1.00 ± 0.05 4.00 ± 0.10 1.00 + 0.25	0.091 ± 0.004 0.091 ± 0.004 0.039 ± 0.002 0.157 ± 0.004 0.039 + 0.002
PERFORATION	DIAMETER PITCH POSITION	D P ₀ E	1.50 ± 0.10 4.00 ± 0.10 1.75 ± 0.10	0.060 ± 0.004 0.157 ± 0.004 0.069 ± 0.004
CARRIER TAPE	WIDTH THICKNESS	W t ₁	8.00 + 0.30 8.00 ± 0.10 0.254 ± 0.02	0.315 ± 0.012 0.315 ± 0.004 0.010 ± 0.0008
COVER TAPE	WIDTH TAPE THICKNESS	C T _t	5.4 ± 0.10 0.062 ± 0.001	0.205 ± 0.004 0.0025 ± 0.0004
DISTANCE	CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION)	F P ₂	3.50 ± 0.05 2.00 ± 0.05	0.138 ± 0.002 0.079 ± 0.002

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

