imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Surface Mount RF PIN Switch Diode

Technical Data

HSMP-3880

Features

- Diodes Optimized for: Ultra-Low Distortion Switching
- Surface Mount SOT-23 Package Tape and Reel Options Available
- Low Failure in Time (FIT) Rate^[1]
- Lead-free Option Available

Note:

1. For more information see the Surface Mount PIN Reliability Data Sheet.

Package Lead Code Identification (Top View)

Description/Applications

The HSMP-3880 switching diode is an ultra low distortion device optimized for higher power applications to 1.5 GHz.

A SPICE model is not available for PIN diodes as SPICE does not provide for a key PIN diode characteristic, carrier lifetime.

Symbol	Parameter	Units	Absolute Maximum
I _f	Forward Current (1 ms Pulse)	Amp	1
Pt	Total Device Dissipation	mW ^[2]	250
P _{iv}	Peak Inverse Voltage	—	Same as V _{BR}
Tj	Junction Temperature	°C	150
T _{STG}	Storage Temperature	°C	-65 to 150

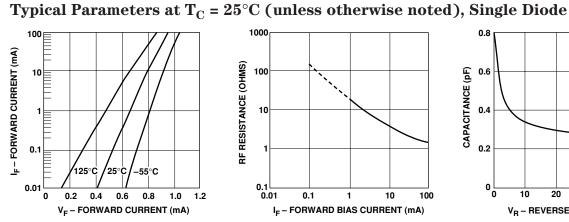
Absolute Maximum Ratings $^{[1]}$ T_{C} = $25^{\circ}C$

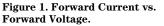
Notes:

1. Operation in excess of any one of these conditions may result in permanent damage to this device.

2. CW Power Dissipation at $T_{\rm LEAD}$ = 25°C. Derate to zero at maximum rated temperature.

Part Number HSMP-	Series Resistance $\mathbf{R}_{\mathbf{S}}(\Omega)$	Carrier Lifetime	Reverse Recovery Time T _{rr} (ns)	Total Capacitance C _T (pF)
3880	3.8	2500	550	0.30 @ 50 V
Test Conditions	$I_{\rm F} = 1 \text{ mA}$ $f = 100 \text{ MHz}$	$I_{\rm F} = 50 \text{ mA}$ $I_{\rm R} = 250 \text{ mA}$	$\begin{array}{l} V_{\rm R} = 10 \ {\rm V} \\ I_{\rm F} = 20 \ {\rm mA} \\ 90\% \ {\rm Recovery} \end{array}$	

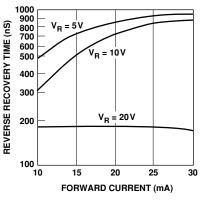
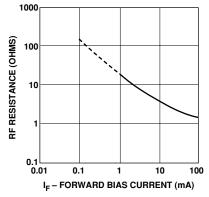
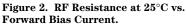
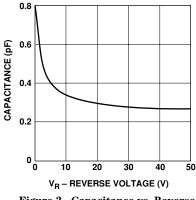
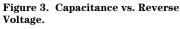

Typical Parameters at T_C = 25 $^\circ C$

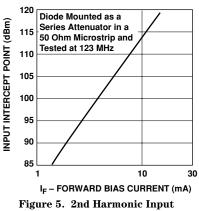

Electrical Specifications $T_C = 25^{\circ}C$

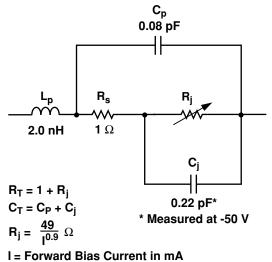
Part Number HSMP-	Package Marking Code ^[1]	Lead Code	Configuration	Minimum Breakdown Voltage V _{BR} (V)	Maximum Series Resistance R _S (Ω)	Maximum Total Capacitance C _T (pF)	Maximum Shunt Mode Harmonic Distortion Hmd (dBc)
3880	$\mathbf{S0}$	0	Single	100	6.5	0.40	-55
Test Conditions		$\begin{split} V_{R} = V_{BR} \\ Measure \\ I_{R} \leq 10 \ \mu A \end{split}$	$I_{\rm F} = 5 \text{ mA}$ $f = 100 \text{ MHz}$	$V_R = 50 V$ f = 1 MHz	$\begin{array}{l} 2f_{o},Z_{o}=50\;W\\ f_{o}=400\;MHz\\ P_{in}=+30\;dBm\\ 0V\;bias \end{array}$		

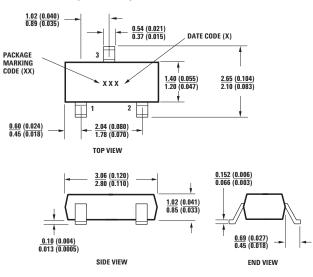
Note:

1. Package marking code is white.

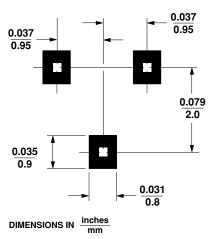

Figure 4. Typical Reverse Recovery Time vs. Reverse Voltage.





Intercept Point vs. Forward Bias Current.

Equivalent Circuit Model HSMP-3880



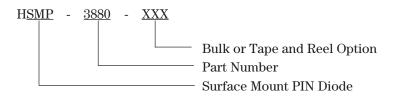
Package Dimensions Outline 23 (SOT-23)

DIMENSIONS ARE IN MILLIMETERS (INCHES)

PC Board Footprints SOT-23

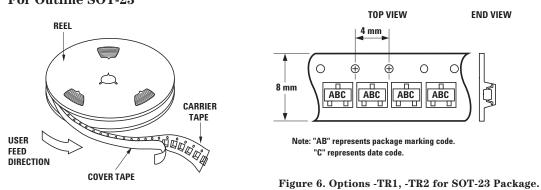
Package Characteristics

Lead Material	Alloy 42
Lead Finish	Tin-Lead 85-15%
Maximum Soldering Temperature	
Minimum Lead Strength	
Typical Package Inductance	2 nH
Typical Package Capacitance	0.08 pF (opposite leads)

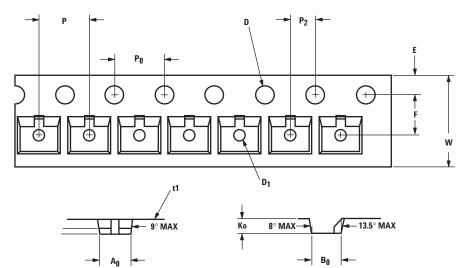

Profile Option Descriptions

-BLK = Bulk -TR1 = 3K pc. Tape and Reel, Device Orientation; See Figure 6 -TR2 = 10K pc. Tape and Reel, Device Orientation; See Figure 6

Tape and Reeling conforms to Electronic Industries RS-481, "Taping of Surface Mounted Components for Automated Placement." For lead-free option, the part number will have the character "G" at the end, e.g., TR2G for a 10K pc lead-free reel.


Ordering Information

Specify part number followed by option under. For example:



Device Orientation For Outline SOT-23

Tape Dimensions and Product Orientation For Outline SOT-23

	DESCRIPTION	SYMBOL	SIZE (mm)	SIZE (INCHES)
CAVITY	LENGTH	An	$\textbf{3.15} \pm \textbf{0.10}$	$\textbf{0.124} \pm \textbf{0.004}$
	WIDTH	Bo	$\textbf{2.77} \pm \textbf{0.10}$	$\textbf{0.109} \pm \textbf{0.004}$
	DEPTH	KO	$\textbf{1.22} \pm \textbf{0.10}$	$\textbf{0.048} \pm \textbf{0.004}$
	PITCH	Р	$\textbf{4.00} \pm \textbf{0.10}$	$\textbf{0.157} \pm \textbf{0.004}$
	BOTTOM HOLE DIAMETER	D ₁	1.00 + 0.05	$\textbf{0.039} \pm \textbf{0.002}$
PERFORATION	DIAMETER	D	1.50 + 0.10	0.059 + 0.004
	PITCH	Po	$\textbf{4.00} \pm \textbf{0.10}$	$\textbf{0.157} \pm \textbf{0.004}$
	POSITION	E	$\textbf{1.75} \pm \textbf{0.10}$	$\textbf{0.069} \pm \textbf{0.004}$
CARRIER TAPE	WIDTH	w	8.00 +0.30 -0.10	0.315 +0.012-0.004
	THICKNESS	t1	$\textbf{0.229} \pm \textbf{0.013}$	$\textbf{0.009} \pm \textbf{0.0005}$
DISTANCE BETWEEN CENTERLINE	CAVITY TO PERFORATION (WIDTH DIRECTION)	F	$\textbf{3.50} \pm \textbf{0.05}$	$\textbf{0.138} \pm \textbf{0.002}$
	CAVITY TO PERFORATION (LENGTH DIRECTION)	P ₂	$\textbf{2.00} \pm \textbf{0.05}$	$\textbf{0.079} \pm \textbf{0.002}$

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or (916) 788-6763

Europe: +49 (0) 6441 92460

China: 10800 650 0017

Hong Kong: (65) 6756 2394

India, Australia, New Zealand: (65) 6755 1939

Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)

Korea: (65) 6755 1989

Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (65) 6755 2044

Taiwan: (65) 6755 1843

Data subject to change. Copyright © 2004 Agilent Technologies, Inc. Obsoletes 5968-7702E March 24, 2004 5988-9924EN