

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

DATA SHEET

HSTL16918 9-bit to 18-bit HSTL-to-LVTTL memory address latch

Product data 2001 Jun 16

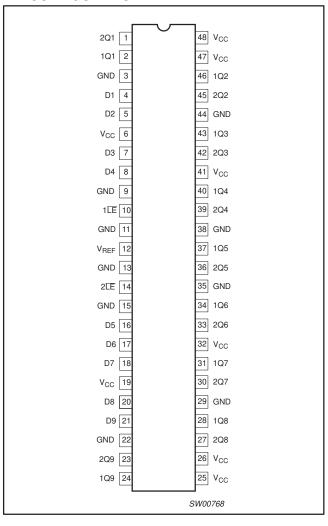
9-bit to 18-bit HSTL-to-LVTTL memory address latch

HSTL16918

FEATURES

- Inputs meet JEDEC HSTL Std. JESD 8–6, and outputs meet Level III specifications
- ESD classification testing is done to JEDEC Standard JESD22.
 Protection exceeds 2000 V to HBM per method A114.
- Latch-up testing is done to JEDEC Standard JESD78, which exceeds 100 mA.
- Packaged in 48-pin plastic thin shrink small outline package (TSSOP48)

DESCRIPTION


The HSTL16918 is a 9-bit to 18-bit D-type latch designed for 3.15 to 3.45 V V_{CC} operation. The D inputs accept HSTL levels and the Q outputs provide LVTTL levels.

The HSTL16918 is particularly suitable for driving an address bus to two banks of memory. Each bank of nine outputs is controlled with its own latch-enable $(\overline{\text{LE}})$ input.

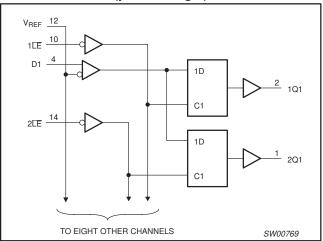
Each of the nine D inputs is tied to the inputs of two D-type latches that provide true data (Q) at the outputs. While $\overline{\text{LE}}$ is LOW the Q outputs of the corresponding nine latches follow the D inputs. When $\overline{\text{LE}}$ is taken HIGH, the Q outputs are latched at the levels set up at the D inputs.

The HSTL16918 is characterized for operation from 0 to +70 °C.

PIN CONFIGURATION

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DWG NUMBER
48-pin plastic thin shrink small outline package (TSSOP48)	0 to +70 °C	HSTL16918DGG	SOT362-1


9-bit to 18-bit HSTL-to-LVTTL memory address latch

HSTL16918

PIN DESCRIPTION

PIN	SYMBOL	FUNCTION
4, 5, 7, 8, 16, 17, 18, 20, 21	D[1-9]	Inputs
2, 46, 43, 40, 37, 34, 31, 28, 24	1Q[1–9]	Outouto
1, 45, 42, 39, 36, 33, 30, 27, 23	2Q[1-9]	Outputs
10	1LE	Latch enable
14	2LE	Laterrable
12	V_{REF}	Reference voltage
6, 19, 25, 26, 32, 41, 47, 48	V _{CC}	Supply voltage
3, 9, 11, 13, 15, 22, 29, 35, 38, 44	GND	Ground

LOGIC DIAGRAM (positive logic)

FUNCTION TABLE

INP	OUTPUT	
LE	D	Q
L	Н	Н
L	L	L
Н	Х	Q ₀ ¹

2001 Jun 16

NOTE:

1. Output level before the indicated steady-state input conditions were established.

9-bit to 18-bit HSTL-to-LVTTL memory address latch

HSTL16918

ABSOLUTE MAXIMUM RATINGS¹

Over operating free-air temperature range (unless otherwise noted).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	Supply voltage range		-0.5 to +4.6	V
V _I	Input voltage range ²		-0.5 to V _{CC} +0.5	V
V _O	Output voltage range ²		-0.5 to V _{CC} +0.5	V
I _{IK}	Input clamp current	V _I < 0	– 50	mA
I _{OK}	Output clamp current ³	$V_O < 0$ or $V_O > V_{CC}$	±50	mA
I _O	Continuous output current	$V_O = 0$ to V_{CC}	±50	mA
	Continuous current through each V _{CC} or GND		±100	mA
θ_{JA}	Package thermal impedance ⁴		89	°C/W
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

- 1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 This current flows only when the output is in the high state and V_O > V_{CC}.
 The package thermal impedance is calculated in accordance with JESD 51.

RECOMMENDED OPERATING CONDITIONS¹

OVMDOL	DADAMETED		LINUT			
SYMBOL	PARAMETER	Min	Nom	Max	UNIT	
V _{CC}	Supply voltage	3.15		3.45	V	
V_{REF}	Reference voltage	0.68	0.75	0.9	V	
VI	Input voltage		0		1.5	V
V_{IH}	AC high-level input voltage	All inputs	V _{REF} + 200 mV			V
V_{IL}	AC low-level input voltage	All inputs			V _{REF} – 200 mV	V
V_{IH}	DC high-level input voltage	All inputs	V _{REF} + 100 mV			V
V_{IL}	DC low-level input voltage	All inputs			V _{REF} – 100 mV	V
I _{OH}	High-level output current				-24	mA
I _{OL}	Low-level output current			24	mA	
T _{amb}	Operating free-air temperature range	0		+70	°C	

NOTE:

2001 Jun 16

^{1.} All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

9-bit to 18-bit HSTL-to-LVTTL memory address latch

HSTL16918

ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range (unless otherwise noted).

CVMDOL	DADAMETED	TEST COMPLIANS		LIMITS		UNIT
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Typ ¹	Max	UNII
V _{IK}		$V_{CC} = 3.15 \text{ V}; I_I = -18 \text{ mA}$			-1.2	V
V _{OH}		$V_{CC} = 3.15 \text{ V}; I_{OH} = -24 \text{ mA}$	2.4			V
V _{OL}		$V_{CC} = 3.15 \text{ V}; I_{OL} = 24 \text{ mA}$			0.5	V
	Control inputs	$V_{CC} = 3.45 \text{ V}; V_{I} = 0 \text{ or } 1.5 \text{ V}$			±5	μΑ
l _l	Data inputs	$V_{CC} = 3.45 \text{ V}; V_{I} = 0 \text{ or } 1.5 \text{ V}$			±5	μΑ
	V _{REF}	$V_{CC} = 3.45 \text{ V}; V_{REF} = 0.68 \text{ V or } 0.9 \text{ V}$			90	μΑ
I _{CC}		$V_{CC} = 3.45 \text{ V}; V_{I} = 0 \text{ or } 1.5 \text{ V}$		50	100	mA
	Control inputs	$V_{CC} = 0 \text{ or } 3.3 \text{ V}; V_{I} = 0 \text{ or } 3.3 \text{ V}$		2		pF
Cl	Data inputs	$V_{CC} = 0 \text{ or } 3.3 \text{ V}; V_{I} = 0 \text{ or } 3.3 \text{ V}$		2.5		pF
Co	Outputs	V _{CC} = 0 V; V _O = 0 V		4		pF

NOTE:

TIMING REQUIREMENTS

Over recommended operating free-air temperature range (unless otherwise noted).

SYMBOL	PARAMETER	TEST CONDITIONS	$V_{CC} = 3.3$	UNIT		
STWIBOL	PARAMETER	TEST CONDITIONS	Min	Max	OIVIII	
t _w	Pulse duration	LE LOW (Figure 1)	3		ns	
t _{su}	Setup time	D before LE ↑ (Figure 2)	2		ns	
t _h	Hold time	D after LE ↑ (Figure 2)	1		ns	
t _{ldr}	Data race condition time ¹	D after LE ↓		0	ns	

NOTE:

SWITCHING CHARACTERISTICS

Over recommended operating free-air temperature range; $V_{REF} = 0.75 \text{ V}$.

SYMBOL	PARAMETER	FROM	то	V _{CC} = 3.3	UNIT		
STMBOL	PARAMETER	(INPUT)	(INPUT) (OUTPUT) Min Max		Max	UNIT	
	Proposition doloy (Figure 2)	D	Q	1.9	3.4	ns	
^t pd	Propagation delay (Figure 3)	ΙĒ	Q	1.9	4.2	ns	

SIMULTANEOUS SWITCHING CHARACTERISTICS

Over recommended operating free-air temperature range; V_{REF} = 0.75 V

SYMBOL	PARAMETER	FROM	то	V _{CC} = 3.3	UNIT		
STWIBOL	PANAMETEN	(INPUT)	(OUTPUT)	Min	Max	UNIT	
	Propagation delay; all outputs switching	D	Q	1.9	4.4	ns	
^I pd	(Figure 3)	LE	Q	1.9	5.2	ns	

2001 Jun 16 5

^{1.} All typical values are at V_{CC} = 3.3 V; T_{amb} = 25 °C.

^{1.} This is the maximum time after E switches LOW that the data input can return to the latched state from the opposite state without producing a glitch on the output.

9-bit to 18-bit HSTL-to-LVTTL memory address latch

HSTL16918

VOLTAGE WAVEFORMS

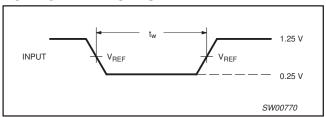


Figure 1. Pulse duration

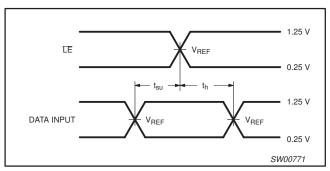


Figure 2. Setup and Hold times

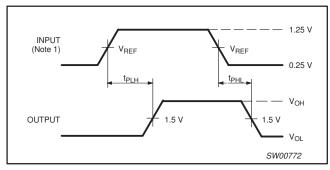
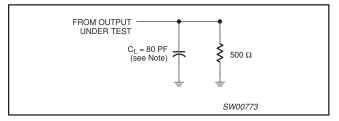



Figure 3. Propagation delay times

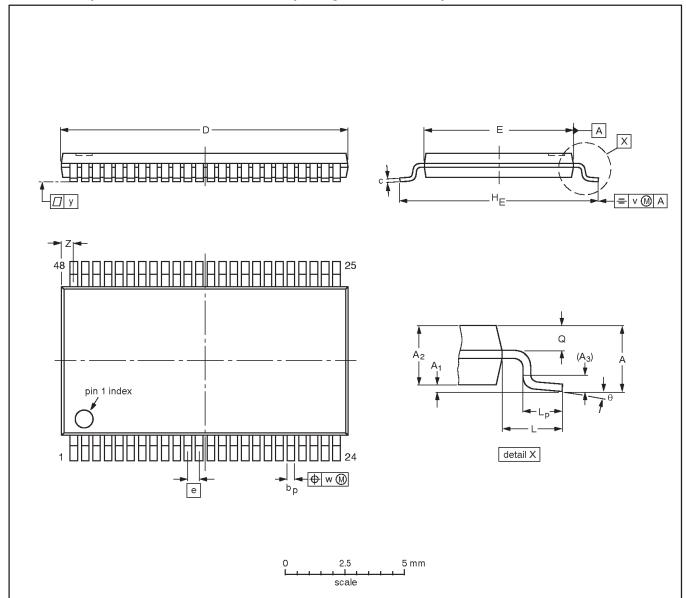
NOTES:

- 1. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O=50~\Omega,~t_r\leq 1~ns,~t_f\leq 1~ns.$
- 2. The outputs are measured one at a time with one transition per measurement.
- 3. t_{PHL} and t_{PLH} are the same as t_{pd} .

LOAD CIRCUIT

NOTE: C_L includes probe and jig capacitance.

Figure 4. Load circuit


2001 Jun 16 6

9-bit to 18-bit HSTL-to-LVTTL memory address latch

HSTL16918

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1 mm

SOT362-1

DIMENSIONS (mm are the original dimensions).

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	٧	w	у	Z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	12.6 12.4	6.2 6.0	0.5	8.3 7.9	1	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.8 0.4	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES		EUROPEAN ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1330E DATE	
SOT362-1		MO-153				-95-02-10- 99-12-27	

2001 Jun 16 7

9-bit to 18-bit HSTL-to-LVTTL memory address latch

HSTL16918

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

- [1] Please consult the most recently issued datasheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 2001 All rights reserved. Printed in U.S.A.

Date of release: 06-01

Document order number: 9397 750 08474

Let's make things better.

Philips Semiconductors

