

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

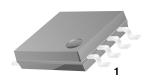
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

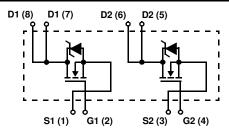
HUFA76413DK8T

N-Channel Logic Level UltraFET[®] Power MOSFET 60V, 4.8A, $56m\Omega$

General Description


These N-Channel power MOSFETs are manufactured using the innovative UltraFET® process. This advanced process technology achieves the lowest possible onresistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching convertors, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and battery-operated products.

Applications


- · Motor and Load Control
- · Powertrain Management

Features

- 150°C Maximum Junction Temperature
- UIS Capability (Single Pulse and Repetitive Pulse)
- Ultra-Low On-Resistance $r_{DS(ON)} = 0.049\Omega$, $V_{GS} = 10V$
- Ultra-Low On-Resistance $r_{DS(ON)} = 0.056\Omega$, $V_{GS} = 5V$

SO-8

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
$V_{\rm DSS}$	Drain to Source Voltage	60	V
V _{GS}	Gate to Source Voltage	±16	V
	Drain Current		
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$)	5.1	Α
I_D	Continuous (T _C = 25°C, V _{GS} = 5V)	4.8	Α
	Continuous ($T_C = 125^{\circ}C$, $V_{GS} = 5V$, $R_{\theta JA} = 228^{\circ}C/W$)	1	Α
	Pulsed	Figure 4	Α
E _{AS}	Single Pulse Avalanche Energy (Note 1)	260	mJ
	Power dissipation	2.5	W
P_{D}	Derate above 25°C	0.02	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to 150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance Junction to Ambient SO-8 (Note 2)	50	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient SO-8 (Note 3)	191	°C/W
$R_{\theta,JA}$	Thermal Resistance Junction to Ambient SO-8 (Note 4)	228	°C/W

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/

Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.

All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
76413DK8	HUFA76413DK8T	SO-8	330mm	12mm	2500 units

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	60	-	-	V
1	Zoro Coto Voltago Drain Current	$V_{DS} = 50V$	-	-	1	^
IDSS 2	Zero Gate Voltage Drain Current	$V_{GS} = 0V$ $T_A = 150^{\circ}C$	-	-	250	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 16V$	1	-	±100	nA

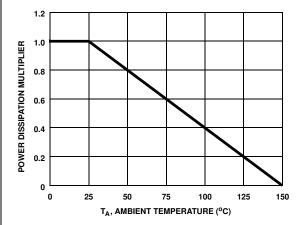
On Characteristics

V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1	-	3	V
		$I_D = 5.1A, V_{GS} = 10V$	-	0.041	0.049	
r _{DS(ON)} Drain to Source On Resistance	Drain to Source On Resistance	$I_D = 4.8A, V_{GS} = 5V$	-	0.048	0.056	0
	$I_D = 4.8A, V_{GS} = 5V$ $T_A = 150^{\circ}C$	-	0.091	0.106	32	

Dynamic Characteristics

C _{ISS}	Input Capacitance	V 05V V	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz		620	-	pF
C _{OSS}	Output Capacitance				180	-	pF
C _{RSS}	Reverse Transfer Capacitance	7 - 111112			30	-	pF
$Q_{g(TOT)}$	Total Gate Charge at 10V	$V_{GS} = 0V \text{ to } 10V$			18	23	nC
$Q_{g(5)}$	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$	$V_{DD} = 30V$	-	10	13	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0V \text{ to } 1V$	$I_D = 4.8A$	-	0.6	0.8	nC
Q_{gs}	Gate to Source Gate Charge		$I_g = 1.0 \text{mA}$	-	1.8	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	5	-	nC

Switching Characteristics $(V_{GS} = 5V)$


t _{ON}	Turn-On Time		-	-	44	ns
t _{d(ON)}	Turn-On Delay Time	$V_{DD} = 30V, I_{D} = 1A$ $V_{GS} = 5V, R_{GS} = 16\Omega$	-	10	-	ns
t _r	Rise Time		-	19	-	ns
t _{d(OFF)}	Turn-Off Delay Time		-	45	-	ns
t _f	Fall Time		-	27	-	ns
t _{OFF}	Turn-Off Time		-	-	108	ns

Drain-Source Diode Characteristics

V _{SD} Source to Drain Diode Voltage	Source to Drain Diode Voltage	I _{SD} = 4.8A	-	-	1.25	V
	I _{SD} = 2.4A	-	-	1.0	V	
t _{rr}	Reverse Recovery Time	$I_{SD} = 4.8A$, $dI_{SD}/dt = 100A/\mu s$	-	-	43	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 4.8A$, $dI_{SD}/dt = 100A/\mu s$	-	-	55	nC

- $\label{eq:Notes:1} \textbf{Notes:} \\ \textbf{1: Starting T}_J = 25^{\circ}\text{C}, \ L = 20\text{mH}, \ I_{AS} = 5.1\text{A} \\ \textbf{2: } \ R_{\theta JA} \text{ is } 50^{\circ}\text{C/W} \text{ when mounted on a } 0.5 \text{ in}^2 \text{ copper pad on FR-4 at 1 second.} \\ \textbf{3: } \ R_{\theta JA} \text{ is } 191^{\circ}\text{ C/W} \text{ when mounted on a } 0.027 \text{ in}^2 \text{ copper pad on FR-4 at } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 228^{\circ}\text{C/W} \text{ when mounted on a } 0.006 \text{ in}^2 \text{ copper pad on FR-4 at } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 228^{\circ}\text{C/W} \text{ when mounted on a } 0.006 \text{ in}^2 \text{ copper pad on FR-4 at } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 228^{\circ}\text{C/W} \text{ when mounted on a } 0.006 \text{ in}^2 \text{ copper pad on FR-4 at } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 228^{\circ}\text{C/W} \text{ when mounted on a } 0.006 \text{ in}^2 \text{ copper pad on FR-4 at } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 228^{\circ}\text{C/W} \text{ when mounted on a } 0.006 \text{ in}^2 \text{ copper pad on FR-4 at } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 228^{\circ}\text{C/W} \text{ when mounted on a } 0.006 \text{ in}^2 \text{ copper pad on FR-4 at } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 228^{\circ}\text{C/W} \text{ when mounted on a } 0.006 \text{ in}^2 \text{ copper pad on } \text{CM} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 228^{\circ}\text{C/W} \text{ when mounted on a } 0.006 \text{ in}^2 \text{ copper pad on } \text{CM} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 228^{\circ}\text{C/W} \text{ when mounted on a } 0.006 \text{ in}^2 \text{ copper pad on } \text{CM} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \ R_{\theta JA} \text{ is } 1000 \text{ seconds.} \\ \textbf{4: } \$

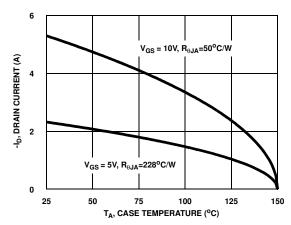


Figure 1. Normalized Power Dissipation vs Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

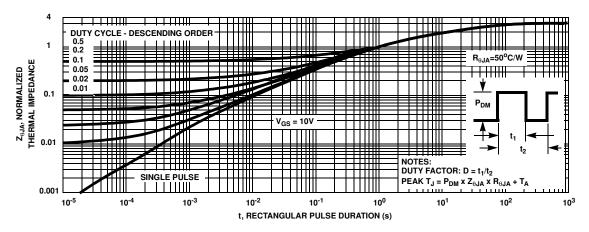


Figure 3. Normalized Maximum Transient Thermal Impedance

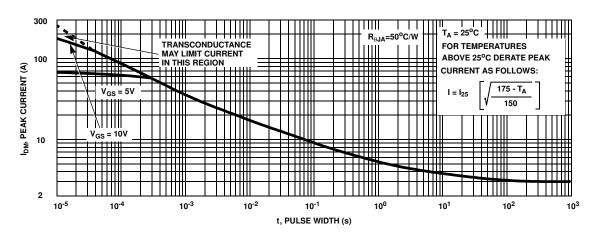


Figure 4. Peak Current Capability

Typical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

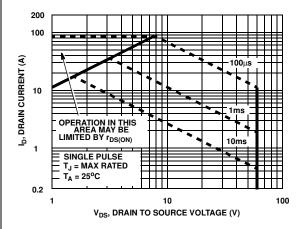


Figure 5. Forward Bias Safe Operating Area

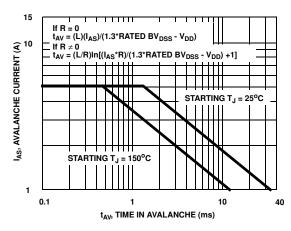


Figure 6. Unclamped Inductive Switching Capability

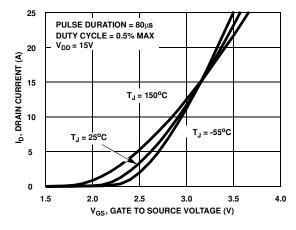


Figure 7. Transfer Characteristics

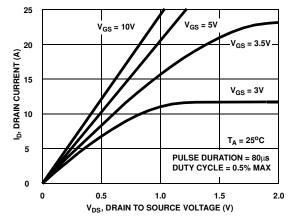


Figure 8. Saturation Characteristics

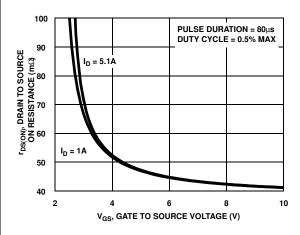


Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current

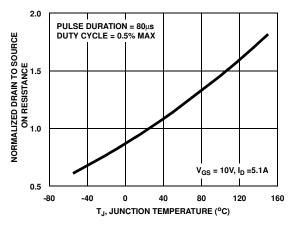


Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics T_A = 25°C unless otherwise noted

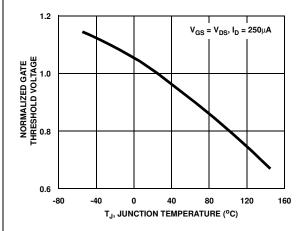


Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature

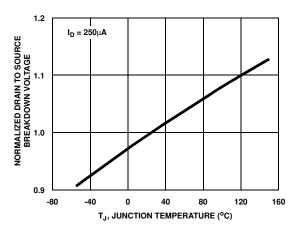


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

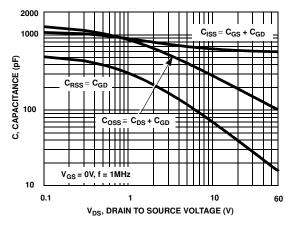


Figure 13. Capacitance vs Drain to Source Voltage

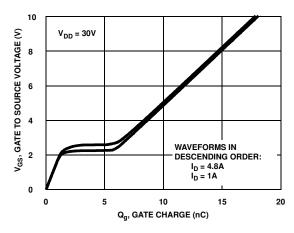


Figure 14. Gate Charge Waveforms for Constant Gate Currents

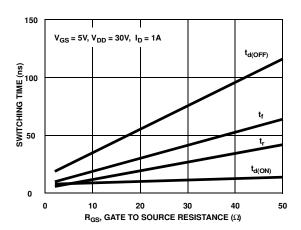


Figure 15. Switching Time vs Gate Resistance

Test Circuits and Waveforms

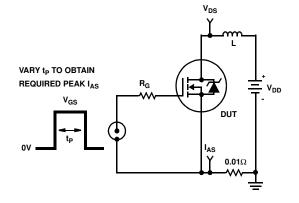


Figure 16. Unclamped Energy Test Circuit

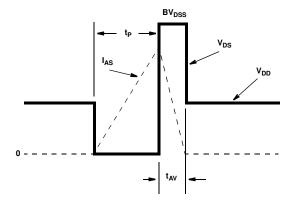


Figure 17. Unclamped Energy Waveforms

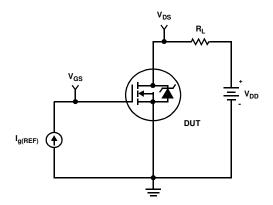


Figure 18. Gate Charge Test Circuit

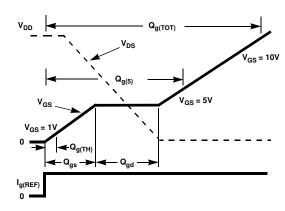


Figure 19. Gate Charge Waveforms

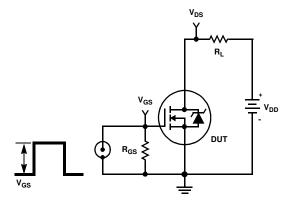


Figure 20. Switching Time Test Circuit

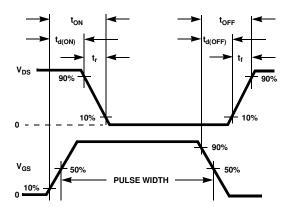


Figure 21. Switching Time Waveforms

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}} \tag{EQ. 1}$$

In using surface mount devices such as the SO-8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 22 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 22 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads.

$$R_{\Theta IA} = 103.2 - 24.3 \ln(Area)$$
 (EQ. 2)

The dual die SO-8 package introduces an additional thermal coupling resistance, $R_{\theta \rm B}$. Equation 3 describes $R_{\theta \rm B}$ as a function of the top copper mouting pad area.

$$R_{\Theta B} = 46.4 - 21.7 \ln(Area)$$
 (EQ. 3)

The thermal coupling resistance vs. copper area is also graphically depicted in Figure 22.

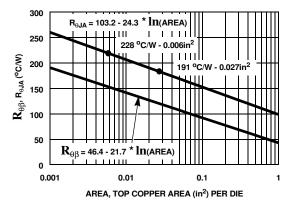
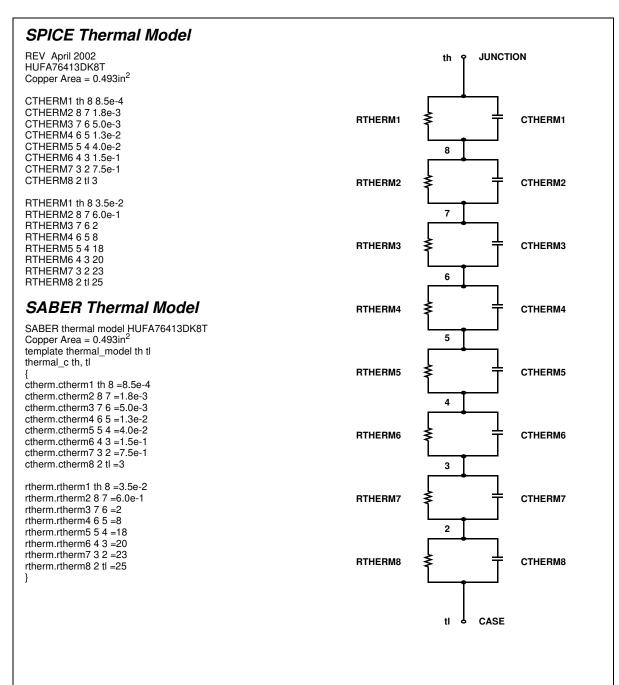


Figure 22. Thermal Resistance vs Mounting
Pad Area

```
PSPICE Electrical Model
.SUBCKT HUFA76413DK8T 2 1 3 ;
                                  rev April 2002
CA 12 8 7.8e-10
CB 15 14 9.8e-10
                                                                                                 LDRAIN
CIN 6 8 5.8e-10
                                                            DPLCAP
                                                                                                         DRAIN

-0 2
                                                         10
DBODY 7 5 DBODYMOD
                                                                                                RLDRAIN
DBREAK 5 11 DBREAKMOD
                                                                     €RSLC1
                                                                                  DBREAK V
DPLCAP 10 5 DPLCAPMOD
                                                           RSLC2 €
                                                                         ESLC
EBREAK 11 7 17 18 67.4
                                                                                        11
EDS 14 8 5 8 1
                                                                       .
50
FGS 13 8 6 8 1
                                                                     ≨rdrain
                                                                                         17
                                                                                              ▲ DBODY
                                                                                 FRRFAK
FSG 6 10 6 8 1
                                                   ESG
EVTHRES 6 21 19 8 1
                                                             EVTHRES
EVTEMP 20 6 18 22 1
                                                               19
8
                                                                                   MWEAK
                                    LGATE
                                                  EVTEMP
                                           RGATE
IT 8 17 1
                                                                            MMFD
                                          9
                                                20
                                                                     MSTRO
                                   RLGATE
LDRAIN 2 5 1e-9
                                                                                                LSOURCE
LGATE 1 9 1.34e-9
                                                                 CIN
                                                                                                         SOURCE
LSOURCE 3 7 0.59e-9
                                                                                   RSOURCE
                                                                                               RLSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
                                                                                      RBREAK
                                                          14
13
MWEAK 16 21 8 8 MWEAKMOD
                                                                                              18
                                                                                               RVTEMP
                                                  S1B
                                                           o S2B
RBREAK 17 18 RBREAKMOD 1
                                                                 СВ
                                                                                               19
RDRAIN 50 16 RDRAINMOD 22.5e-3
                                             CA
                                                                                 IT
                                                                      14
RGATE 9 20 2.2
                                                                                                VBAT
RLDRAIN 2 5 10
                                                     EGS
RLGATE 1 9 13.4
RLSOURCE 3 7 5.9
RSLC1 5 51 RSLCMOD 1e-6
                                                                                      RVTHRES
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 15.3e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*180),2.5))}
.MODEL DBODYMOD D (IS = 8e-13 RS = 1.58e-2 TRS1 = 1e-3 TRS2 = 3e-6 XTI=3.2 CJO = 8e-10 TT = 3.2e-8 M = 0.54)
.MODEL DBREAKMOD D (RS = 1.18 TRS1 = 2e-3 TRS2 = -2.6e-5)
.MODEL DPLCAPMOD D (CJO = 5.7e-10 IS = 1e-30 N = 10 M = 0.87)
.MODEL MMEDMOD NMOS (VTO = 1.68 KP = 2 IS =1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.2)
.MODEL MSTROMOD NMOS (VTO = 2.05 KP =35 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.48 KP = 0.04 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 22 RS = 0.1)
MODEL RBREAKMOD RES (TC1 = 1.15e-3 TC2 = -7.5e-7)
.MODEL RDRAINMOD RES (TC1 = 8.5e-3 TC2 = 1.2e-5)
.MODEL RSLCMOD RES (TC1 = 3e-2 TC2 = 5.3e-7)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -1.4e-3 TC2 = -7e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.5e-3 TC2 = 2e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.0 VOFF= -1.0)
MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.0 VOFF= -5.0)


.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.2 VOFF= 0.2)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.2 VOFF= -0.2)
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
```

©2003 Fairchild Semiconductor Corporation Rev. B

Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank

Wheatley

SABER Electrical Model REV April 2002 template HUFA76413DK8T n2,n1,n3 electrical n2,n1,n3 var i iscl dp..model dbodymod = (isl = 8e-13, rs = 1.58e-2, trs1 = 1e-3, trs2 = 3e-6, xti = 3.2, cjo = 8e-10, tt = 3.2e-8, m = 0.54) dp..model dbreakmod = (rs = 1.18, trs1 = 2e-3, trs2 = -2.6e-5) dp..model dplcapmod = (cjo = 5.7e-10, isl = 10e-30, nl = 10, m = 0.87)m..model mmedmod = $(type=_n, vto = 1.68, kp = 2, is = 1e-30, tox=1)$ m..model mstrongmod = $(type=_n, vto = 2.05, kp = 35, is = 1e-30, tox = 1)$ m..model mweakmod = $(type=_n, vto = 1.48, kp = 0.04, is = 1e-30, tox = 1, rs=0.1)$ sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.0, voff = -1.0) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.0, voff = -5.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.2, voff = 0.2) sw vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.2) LDRAIN DPLCAP DRAIN c.ca n12 n8 = 7.8e-10RLDRAIN c.cb n15 n14 = 9.8e-10RSLC1 c.cin n6 n8 = 5.8e-10RSLC₂ ISCL dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod DBREAK 3 50 dp.dplcap n10 n5 = model=dplcapmod RDRAIN ESG 11 **DBODY** i.it n8 n17 = 1 **FVTHRFS** $(\frac{19}{8})$ MWEAK LGATE **EVTEMP** I.ldrain n2 n5 = 1e-9RGATE 18 22 I.lgate n1 n9 = 1.34e-9**EBREAK ★**MMED I.Isource n3 n7 = 0.59e-920 MSTRO RLGATE LSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u CIN SOURCE m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u RSOURCE m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u RLSOURCE res.rbreak n17 n18 = 1, tc1 = 1.15e-3, tc2 = -7.5e-7 RBREAK <u>13</u> 8 14 13 res.rdrain n50 n16 = 22.5e-3, tc1 = 8.5e-3, tc2 = 1.2e-5res.rgate n9 n20 = 2.2**≷**RVTEMP S₁B S2B res.rldrain n2 n5 = 10 СВ 19 res.rlgate n1 n9 = 13.4CA т (♠ 14 res.rlsource n3 n7 = 5.9 VBAT res.rslc1 n5 n51= 1e-6, tc1 = 3e-2, tc2 =5.3e-7 8 EGS EDS res.rslc2 n5 n50 = 1e3res.rsource n8 n7 = 15.3e-3, tc1 = 1e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.5e-3, tc2 = 2e-7 **RVTHRES** res.rvthres n22 n8 = 1, tc1 = -1.4e-3, tc2 = -7e-6spe.ebreak n11 n7 n17 n18 = 67.4 spe.eds n14 n8 n5 n8 = 1 spe.eqs n13 n8 n6 n8 = 1spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/180))** 2.5))

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FACT™	ImpliedDisconnect™	PACMAN™	SPM™
ActiveArray™	FACT Quiet Series™	ISOPLANAR™	POP™	Stealth™
Bottomless™	FAST [®]	LittleFET™	Power247™	SuperSOT™-3
CoolFET™	FASTr™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	FRFET™	MicroPak™	QFET™	SuperSOT™-8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™	MSX™	QT Optoelectronics™	TinyLogic™
E ² CMOS™	HiSeC™	MSXPro™	Quiet Series™	TruTranslation™
EnSigna™	I ² C™	OCXTM	RapidConfigure™	UHC™
Across the board	. Around the world.™	OCXPro™	RapidConnect™	UltraFET [®]
The Power Franc	hise™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
Programmable A	ctive Droop™	OPTOPLANAR™	SMART START™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.