: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

16-Channel High Voltage Analog Switch With Bleed Resistors

Features

- HVCMOS® technology for high performance
- 220 V operating conditions
- Output on-resistance typically 22Ω
- Integrated bleed resistors on the outputs
- 5.0 and 12.0 V CMOS logic compatibility
- Very low quiescent power dissipation $(-10 \mu \mathrm{~A})$
- -45dB min off isolation at 7.5 MHz
- Low parasitic capacitance
- Excellent noise immunity
- Flexible operating supply voltages

Applications

- Medical ultrasound imaging
- Non-destructive evaluation

General Description

The Supertex HV238 is a 220 V , 16 -channel, high voltage analog switch integrated circuit (IC) with output bleed resistors $\left(R_{\text {INT }}\right)$. The output switches are configured as 2 sets of 8 single pole single throw analog switches. It is intended to be used in applications requiring high voltage switching controlled by low voltage control signals such as ultrasound imaging.

The 2 sets of 8 analog switches are controlled by 2 input logic controls, $D_{\text {IN }} 1$ and $D_{i N} 2$. A logic high on $D_{\text {iN }} 1$ will turn on switches 0 to 7 and a logic high on $D_{\text {in }} 2$ will turn on switches 8 to 15 . The bleed resistors help to significantly reduce voltage built up on capacitive loads such as piezoelectric transducers connected to the outputs.

Block Diagram

Ordering Information

Part Number	Package Option	Packing
HV238FG-G	48-Lead LQFP	$250 /$ Tray
		1000/Reel

-G denotes a lead ($P b$)-free / RoHS compliant package

Absolute Maximum Ratings

Parameter	Value
V_{DD} logic power supply voltage	-0.5 V to +15 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$ supply voltage	225 V
$\mathrm{~V}_{\mathrm{PP}}$ positive high voltage supply	-0.5 V to $\mathrm{V}_{\mathrm{NN}}+225 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$ negative high voltage supply	+0.5 V to -225 V
Logic input voltages	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog signal range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation	1.0 W

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

Product Marking

Bottom Marking
$\mathrm{YY}=$ Year Sealed
WW = Week Sealed
L = Lot Number
C = Country of Origin*
A = Assembler ID*
\qquad = "Green" Packaging
*May be part of top marking

Package may or may not include the following marks: Si or
48-Lead LQFP

Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{\text {ja }}$
48-Lead LQFP	$52^{\circ} \mathrm{C} / \mathrm{W}$

Operating Conditions

Sym	Parameter	Value
V_{DD}	Logic power supply voltage	4.75 V to 12.6 V
$\mathrm{~V}_{\mathrm{PP}}$	Positive high voltage supply	50 V to 110 V
$\mathrm{~V}_{\mathrm{NN}}$	Negative high voltage supply	-10 V to $\mathrm{V}_{\mathrm{PP}}-220 \mathrm{~V}$
$\mathrm{~V}_{\text {IH }}$	High level input voltage	$\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$ to V_{DD}
V_{IL}	Low-level input voltage	0 V to 1.0 V
$\mathrm{~V}_{\text {SIG }}$	Analog signal voltage peak-to-peak	$\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating free air temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Notes:

1. Power up/down sequence is arbtrary except GND must be powered -up first and powered-down last.
2. $V_{S I G}$ must be $V_{N N} \leq V_{S I G} \leq V_{P P}$ or floating during power up/down transition.
3. Rise and fall times of power supplies $V_{D D}, V_{P P}$ and $V_{N N}$ should not be less than 1.0 msec .

DC Electrical Characteristics
(Over operating conditions unless otherwise specified)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions		
		Min	Max	Min	Typ	Max	Min	Max				
$\mathrm{R}_{\text {ons }}$	Small signal switch on-resistance	-	30	-	26	32	-	40	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{SIG}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{SIG}}=5.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{P P}=+50 \mathrm{~V} \\ & V_{N N}=-170 \mathrm{~V} \end{aligned}$	
		-	25	-	22	27	-	35		$\begin{aligned} & \mathrm{V}_{S I G}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{SIG}}=200 \mathrm{~mA} \end{aligned}$		
		-	25	-	22	27	-	30		$\begin{aligned} & \mathrm{V}_{\mathrm{SIG}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{SIG}}=5.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{PP}}=+110 \mathrm{~V}$	
		-	20	-	18	22	-	25		$\begin{aligned} & \mathrm{V}_{\mathrm{SIG}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{SIG}}=200 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\text {NN }}=-110 \mathrm{~V}$	
$\Delta R_{\text {ONS }}$	Small signal switch on-resistance matching	-	20	-	5.0	20	-	20	\%	$\begin{aligned} & V_{\text {SIG }}=0 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=+110 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-110 \mathrm{~V} \end{aligned}$		
$\mathrm{R}_{\text {ONL }}$	Large signal switch on-resistance	-	-	-	15	-	-	-	Ω	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1.0 \mathrm{~A}$		
$\mathrm{R}_{\text {INT }}$	Output switch shunt resistance	-	-	20	35	50	-	-	$\mathrm{K} \Omega$	Output switch to $\mathrm{R}_{\mathrm{GND}}, \mathrm{I}_{\mathrm{RINT}}=0.5 \mathrm{~mA}$		
$\mathrm{I}_{\text {soL }}$	Switch off leakage per switch	-	5.0	-	1.0	10	-	15	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=+10 \mathrm{~V}$		
$\mathrm{V}_{\text {os }}$	DC offset switch off	-	300	-	100	300	-	300	mV	No Load		
	DC offset switch on	-	500	-	100	500	-	500				
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches off		
$\mathrm{I}_{\mathrm{NNQ}}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current	-	-	-	-10	-50	-	-				
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches on, $\mathrm{I}_{\mathrm{sw}}=5.0 \mathrm{~mA}$		
$\mathrm{I}_{\mathrm{NNQ}}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current	-	-	-	-10	-50	-	-				
I_{sw}	Switch output peak current	-	3.0	-	3.0	2.0	-	2.0	A	$\mathrm{V}_{\text {SIG }}$ duty cycly $<0.1 \%$		
$\mathrm{f}_{\text {sw }}$	Output switching frequency	-	-	-	-	50	-	-	kHz	Duty cycle $=50 \%$		
$\mathrm{I}_{\text {PP }}$	Average $\mathrm{V}_{\text {PP }}$ supply current	-	6.5	-	-	8.8	-	10	mA	$\mathrm{V}_{\mathrm{PP}}=+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-170 \mathrm{~V}$ All output switches are turning on and off at 50 kHz		
I_{NN}	Average $\mathrm{V}_{\text {NN }}$ supply current	-	8.1	-	-	-8.8	-	-10				
$\mathrm{I}_{\text {PP }}$	Average $\mathrm{V}_{\text {PP }}$ supply current	-	-8.1	-	-	6.3	-	6.9	mA	$V_{P P}=+110 \mathrm{~V}, V_{N N}=-110 \mathrm{~V}$ All output switches are turning on and off at 50 kHz		
I_{NN}	Average $\mathrm{V}_{\text {NN }}$ supply current	-	5.0	-	-	-6.3	-	-6.9				
$\mathrm{I}_{\text {DDQ }}$	Logic supply quiescent current	-	10	-	-	10	-	10	$\mu \mathrm{A}$	All logic inputs are static.		
$I_{\text {D }}$	Logic supply average current	-	2.0	-	-	2.0	-	2.0	mA	$D_{\text {IN }} 1=D_{\text {IN }} 2=3.0 \mathrm{MHz}, \overline{\mathrm{LE}}$ is high		
$\mathrm{C}_{\text {IN }}$	Logic input capacitance	-	10	-	-	10	-	10	pF	---		

AC Electrical Characteristics (Over recommended operating conditions, $v_{\text {op }}=5.0 \mathrm{~V}$, unless otherwise specified)

$\mathrm{t}_{\text {WLE }}$	Time width of $\overline{\mathrm{LE}}$	150	-	150	-	-	150	-	ns	---
$\mathrm{t}_{\text {wDIN }}$	Time width of $\mathrm{D}_{\text {IN }}$	150	-	150	-	-	150	-	ns	---
$\mathrm{t}_{\text {SD }}$	Set up time before $\overline{\mathrm{LE}}$ rises	150	-	150	-	-	150	-	ns	---
t_{ON}	Turn on time	-	5.0	-	-	5.0	-	5.0	$\mu \mathrm{~s}$	$\mathrm{~V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=10 \mathrm{k} \Omega$
$\mathrm{t}_{\text {OFF }}$	Turn off time	-	5.0	-	-	5.0	-	5.0	$\mu \mathrm{~s}$	$\mathrm{~V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=10 \mathrm{k} \Omega$
$\mathrm{dv} / \mathrm{dt}$	Maximun $\mathrm{V}_{\text {SIG }}$ slew rate	-	20	-	-	20	-	20	$\mathrm{~V} / \mathrm{ns}$	---

AC Electrical Characteristics (Over recommended operating conditions, $V_{D D}=5.0 \mathrm{~V}$, unless otherwise specified)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Typ	Max	Min	Max		
K	Off isolation	-30	-	-30	-33	-	-30	-	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 1.0 \mathrm{k} \Omega / 15 \mathrm{pF}$ load
		-45	-	-45	-50	-	-45	-		$f=7.5 \mathrm{MHz}, \mathrm{R}_{\text {LOAD }}=50 \Omega$ load
K_{CR}	Switch crosstalk	-45	-	-45	-	-	-45	-	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load
$1{ }_{10}$	Output switch isolation diode current	-	300	-	-	300	-	300	mA	300ns pulse width, 2.0\% duty cycle
$\mathrm{C}_{\text {SG(OFF) }}$	Off capacitance SW to GND	5.0	17	5.0	12	17	5.0	17	pF	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{C}_{\text {SG(ON) }}$	On capacitance SW to GND	25	50	25	38	50	25	50	pF	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
$+\mathrm{V}_{\text {SPK }}$	Output voltage spike	-	-	-	4.0	-	-	-	V	$\mathrm{R}_{\text {LOAD }}=50 \Omega$
$-V_{\text {SPK }}$		-	-	-	-4.0	-	-	-		

Logic Timing Diagram

Truth Table

$D_{\mathbb{N}} \mathbf{2}$	$\mathrm{D}_{\mathbf{N} \mathbf{1}}$	$\overline{\mathrm{LE}}$	sW0 to SW7	SW8 to SW15
L	L	L	OFF	OFF
L	H	L	ON	OFF
H	L	L	OFF	ON
H	H	L	ON	ON
X	X	H	Hold Previous State	

Test Circuits

Switch OFF Leakage

OFF Isolation

Crosstalk

Pin Description

Pin	Function	Pin	Function
1	VNN	25	SW10
2	N/C	26	SW10
3	VPP	27	SW9
4	N/C	28	SW9
5	DIN1	29	SW8
6	$\overline{\text { LE }}$	30	SW8
7	DIN2	31	SW7
8	N/C	32	SW7
9	N/C	33	SW6
10	VDD	34	SW6
11	GND	35	SW5
12	N/C	36	SW5
13	RGND	37	SW4
14	SW15	38	N/C
15	SW15	39	SW4
16	SW14	40	N/C
17	SW14	41	SW3
18	SW13	42	SW3
19	SW13	43	SW2
20	SW12	44	SW2
21	SW12	45	SW1
22	SW11	46	SW1
23	SW11	47	SW0
24	N/C	48	SW0

www.supertex.com

48-Lead LQFP Package Outline (FG)

$7.00 x 7.00 \mathrm{~mm}$ body, 1.60 mm height (max), 0.50 mm pitch

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	$\boldsymbol{\theta}$
$\begin{array}{\|c} \text { Dimension } \\ (\mathrm{mm}) \end{array}$	MIN	1.40*	0.05	1.35	0.17	8.80*	6.80*	8.80*	6.80*	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.45	$\begin{aligned} & 1.00 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°
	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00		0.60			$3.5{ }^{\circ}$
	MAX	1.60	0.15	1.45	0.27	9.20*	7.20*	9.20*	7.20*		0.75			$7{ }^{\circ}$

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.
Supertex Doc. \#: DSPD-48LQFPFG Version, D041309.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

