: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low Harmonic Distortion 16-Channel High Voltage Analog Switch

Features

- HVCMOS technology for high performance
- 16-channel high voltage analog switch
- 3.3 V input logic level compatible
- 20 MHz data shift clock frequency
- Very low quiescent power dissipation (-10 A)
- Low parasitic capacitance
- DC to 50 MHz small signal frequency response
- -60dB typical off-isolation at 5.0 MHz
- CMOS logic circuitry for low power
- Low harmonic distortion
- Cascadable serial data register with latches
- Flexible operating supply voltages

Applications

- Medical ultrasound imaging
- NDT metal flaw detection
- Piezoelectric transducer drivers
- Optical MEMS modules

General Description

The Supertex HV2605 is a low charge injection 16-channel high voltage analog switch integrated circuit (IC) intended for use in applications requiring high voltage switching controlled by low voltage control signals, such as medical ultrasound imaging and other piezoelectric transducer drivers.

Input data are shifted into a 16-bit shift register that can then be retained in a 16 -bit latch. To reduce any possible clock feed through noise, the latch enable bar should be left high until all bits are clocked in. Data are clocked in during the rising edge of the clock. Using HVCMOS technology, this device combines high voltage bilateral DMOS switches and low power CMOS logic to provide efficient control of high voltage analog signals.

The device is suitable for various combinations of high voltage supplies, e.g., $\mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\mathrm{NN}}:+40 \mathrm{~V} /-160 \mathrm{~V},+100 \mathrm{~V} /-100 \mathrm{~V}$, and $+160 \mathrm{~V} /-$ 40V.

Block Diagram

Ordering Information

Part Number	Package Option	Packing
HV2605FG-G	48-Lead LQFP	250/Tray
HV2605FG-G M931	48-Lead LQFP	1000/Reel

-G indicates package is RoHS compliant ('Green').

Absolute Maximum Ratings

Parameter	Value
V_{DD} logic supply	-0.5 V to +7.0 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$ differential supply	220 V
$\mathrm{~V}_{\mathrm{PP}}$ positive supply	-0.5 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$ negative supply	+0.5 V to -200 V
Logic input voltage	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog signal range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power dissipation: 48-Lead LQFP (FG)	1.0 W

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

Product Marking

$Y Y=$ Year Sealed WW = Week Sealed
L = Lot Number
C = Country of Origin*
A = Assembler ID* $\operatorname{cccccccc}$ AAA
\qquad = "Green" Packaging
*May be part of top marking

Package may or may not include the following marks: Si or
48-Lead LQFP (FG)

Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{\text {ja }}$
48-Lead LQFP	$52^{\circ} \mathrm{C} / \mathrm{W}$

Recommended Operating Conditions

Sym	Parameter	Value
V_{DD}	Logic power supply voltage	3.0 to 5.5 V
$\mathrm{~V}_{\mathrm{PP}}$	Positive high voltage supply	+40 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$	Negative high voltage supply	-40 to -160 V
$\mathrm{~V}_{\mathrm{IH}}$	High level input voltage	$0.9 \mathrm{~V}_{\mathrm{DD}}$ to V_{DD}
V_{IL}	Low level input voltage	0 to $0.1 \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{V}_{\mathrm{SIG}}$	Analog signal voltage peak-to-peak	$\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating free air temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Notes:

1. Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
2. $\quad V_{S / G}$ must be within $V_{N N}$ and $V_{P P}$ or floating during power up/down transition.
3. Rise and fall times of power supplies $V_{D D}, V_{P P}$ and $V_{N N}$ should not be less than 1.0 msec .

DC Electrical Characteristics

(over recommended operating conditions unless otherwise noted)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions		
		Min	Max	Min	Typ	Max	Min	Max				
$\mathrm{R}_{\text {ONS }}$	Small signal switch on-resistance	-	30	-	26	38	-	48	Ω	$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$	
		-	25	-	22	27	-	32		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
		-	25	-	22	27	-	30		$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+100 \mathrm{~V} \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$	
		-	18	-	18	24	-	27		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
		-	23	-	20	25	-	30		$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+160 \mathrm{~V} \\ & V_{N N}=-40 \mathrm{~V} \end{aligned}$	
		-	22	-	16	25	-	27		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
$\Delta \mathrm{R}_{\text {ONS }}$	Small signal switch on-resistance matching	-	20	-	5.0	20	-	20	\%	$\begin{aligned} & \mathrm{I}_{\mathrm{SIG}}=5.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$		
$\mathrm{R}_{\mathrm{ONL}}$	Large signal switch on-resistance	-	-	-	15	-	-	-	Ω	$\mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{I}_{\mathrm{SIG}}=1.0 \mathrm{~A}$		
$\mathrm{I}_{\text {soL }}$	Switch off leakage per switch*	-	5.0	-	1.0	10	-	15	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$ and $\mathrm{V}_{\text {NN }}+10 \mathrm{~V}$		
$V_{\text {os }}$	DC offset switch off*	-	300	-	100	300	-	300	mV	100K Ω load		
	DC offset switch on*	-	500	-	100	500	-	500	mV			
$\mathrm{I}_{\text {PPQ }}$	Quiescent V_{PP} supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches off		
$\mathrm{I}_{\text {NNQ }}$	Quiescent V_{NN} supply current	-	-	-	-10	-50	-	-	$\mu \mathrm{A}$	All switches off		
$\mathrm{I}_{\text {PPQ }}$	Quiescent V_{PP} supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches on, $\mathrm{I}_{\text {sw }}=5.0 \mathrm{~mA}$		
$\mathrm{I}_{\text {NNQ }}$	Quiescent V_{NN} supply current	-	-	-	-10	-50	-	-	$\mu \mathrm{A}$	All switches on, $\mathrm{I}_{\mathrm{sw}}=5.0 \mathrm{~mA}$		
$\mathrm{I}_{\text {sw }}$	Switch output peak current	-	3.0	-	3.0	2.0	-	2.0	A	$\mathrm{V}_{\text {SIG }}$ duty cycle $<0.1 \%$		
$\mathrm{f}_{\text {sw }}$	Output switching frequency	-	-	-	-	50	-	-	kHz	Duty cycle $=50 \%$		
$\mathrm{I}_{\text {PP }}$	Average V_{PP} supply current	-	6.5	-	-	7.0	-	8.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$	All output switches are turning on and off at 50 KHz with no load.	
		-	4.0	-	-	5.5	-	5.5		$\begin{aligned} & V_{P P}=+100 \mathrm{~V} \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$		
		-	4.0	-	-	5.0	-	5.5		$\begin{aligned} & V_{P P}=+160 \mathrm{~V} \\ & V_{N N}=-40 \mathrm{~V} \end{aligned}$		
I_{NN}	Average V_{NN} supply current	-	6.5	-	-	7.0	-	8.0	mA	$\begin{aligned} & V_{P P}=+40 \mathrm{~V} \\ & V_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$	All output switches are turning on and off at 50 KHz with no load.	
		-	4.0	-	-	5.0	-	5.5		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$		
		-	4.0	-	-	5.0	-	5.5		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$		
$I_{\text {D }}$	Average V_{DD} supply current	-	4.0	-	-	4.0	-	4.0	mA	$\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		
$\mathrm{I}_{\text {DDQ }}$	Quiescent V_{DD} supply current	-	10	-	-	10	-	10	$\mu \mathrm{A}$	All logic inputs are static		
$\mathrm{I}_{\text {SOR }}$	Data out source current	0.45	-	0.45	0.70	-	0.40	-	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-0.7 \mathrm{~V}$		
$\mathrm{I}_{\text {SINK }}$	Data out sink current	0.45	-	0.45	0.70	-	0.40	-	mA	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$		
$\mathrm{C}_{\text {IN }}$	Logic input capacitance	-	10	-	-	10	-	10	pF	---		

* See Test Circuits on page 5

AC Electrical Characteristics

(over recommended operating conditions, $V_{D D}=5.0 \mathrm{~V}, t_{R}=t_{F} \leq 5 n s, 50 \%$ duty cycle, $C_{\text {LOAD }}=20 \mathrm{pF}$ unless otherwise noted)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Typ	Max	Min	Max		
$\mathrm{t}_{\text {SD }}$	Set up time before $\overline{\mathrm{LE}}$ rises	25	-	25	-	-	25	-	ns	---
$\mathrm{t}_{\text {wLE }}$	Time width of $\overline{\mathrm{LE}}$	56	-	-	56	-	56	-	ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
		12	-	-	12	-	12	-		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
t_{D}	Clock delay time to data out	50	100	50	78	100	50	100	ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
		15	40	15	30	40	15	40		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\text {WCLR }}$	Time width of CLR	55	-	55	-	-	55	-	ns	---
$t_{\text {su }}$	Set up time data to clock	21	-	-	21	-	21	-	ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
		7	-	-	7	-	7	-		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
t_{H}	Hold time data from clock	2	-	2	-	-	2	-	ns	$\mathrm{V}_{\text {DD }}=3.0$ or 5.0 V
$\mathrm{f}_{\text {CLK }}$	Clock frequency	-	8	-	-	8	-	8	MHz	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$
		-	20	-	-	20	-	20		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Clock rise and fall times	-	50	-	-	50	-	50	ns	---
$\mathrm{T}_{\text {ON }}$	Turn on time*	-	5.0	-	-	5.0	-	5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{~K} \Omega$
$\mathrm{T}_{\text {OFF }}$	Turn off time*	-	5.0	-	-	5.0	-	5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{~K} \Omega$
dv/dt	Maximum $\mathrm{V}_{\text {SIG }}$ slew rate	-	20	-	-	20	-	20	v/ns	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}$
		-	20	-	-	20	-	20		$V_{P P}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$
		-	20	-	-	20	-	20		$\mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-40 \mathrm{~V}$
K	Off isolation*	-30	-	-30	-33	-	-30	-	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 1 \mathrm{~K} \Omega / / 15 \mathrm{pF}$ load
		-58	-	-58	-	-	-58	-		$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load
K_{CR}	Switch crosstalk*	-60	-	-60	-70	-	-60	-	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load
I_{ID}	Output switch isolation diode current	-	300	-	-	300		300	mA	300ns pulse width, 2.0\% duty cycle
$\mathrm{C}_{\text {SG(OFF) }}$	Off capacitance SW to GND	-	15	-	10	15	-	15	pF	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{SG} \text { (ON) }}$	On capacitance SW to GND	-	18	-	13	18	-	18	pF	$V_{\text {SIG }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
$+\mathrm{V}_{\text {SPK }}$ $-\mathrm{V}_{\text {SPK }}$	Output voltage spike*	-	-	-	-	150	-	-	mV	$\begin{aligned} & V_{P P}=+40 \mathrm{~V}, V_{N N}=-160 \mathrm{~V}, \\ & R_{\text {LOAD }}=50 \Omega \end{aligned}$
$+\mathrm{V}_{\text {SPK }}$ $-\mathrm{V}_{\text {SPK }}$		-	-	-	-	150	-	-		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$
$+\mathrm{V}_{\text {SPK }}$ $-\mathrm{V}_{\text {SPK }}$		-	-	-	-	150	-	-		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$
QC	Charge injection*	-	-	-	820	-	-	-	pC	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}, \mathrm{~V}_{\text {SIG }}=0 \mathrm{~V}$
		-	-	-	600	-	-	-		$\mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\text {SIG }}=0 \mathrm{~V}$
		-	-	-	350	-	-	-		$V_{P P}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}, \mathrm{~V}_{\text {SIG }}=0 \mathrm{~V}$

[^0]
Test Circuits

OFF Isolation

Output Switch Isolation Diode Current

Output Voltage Spike

Logic Function Table

D0	D1	...	D7	D8	...	D15	$\overline{L E}$	CLR	SW0	SW1	...	SW7	SW8	...	SW15
L	-		-	-		-	L	L	OFF	-		-	-		-
H	-		-	-		-	L	L	ON	-		-	-		-
-	L		-	-		-	L	L	-	OFF		-	-		-
-	H		-	-		-	L	L	-	ON		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		L	-		-	L	L	-	-		OFF	-		-
-	-		H	-		-	L	L	-	-		ON	-		-
-	-	\cdots	-	L	...	-	L	L	-	-	\ldots	-	OFF	\ldots	-
-	-		-	H		-	L	L	-	-		-	ON		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		L	L	L	-	-		-	-		OFF
-	-		-	-		H	L	L	-	-		-	-		ON
X	X	X	X	X	X	X	H	L	HOLD PREVIOUS STATE						
X	X	X	X	X	X	X	X	H	ALL SWITCHES OFF						

Notes:

1. The 16 switches operate independently.
2. Serial data is clocked in on the L to H transition of the CLK.

All 16 switches go to a state retaining their latched condition at the rising edge of $\overline{L E}$. When $\overline{L E}$ is low the shift registers data flow through the latch. $D_{\text {out }}$ is high when data in the shift register 15 is high.
Shift registers clocking has no effect on the switch states if $\overline{L E}$ is high.
The CLR clear input overrides all other inputs.

Logic Timing Waveforms

HV2605 Pin Description
48-Lead LQFP (FG)

Pin \#	Function
1	NC
2	NC
3	SW4B
4	SW4A
5	SW3B
6	SW3A
7	SW2B
8	SW2A
9	SW1B
10	SW1A
11	SW0B
12	SW0A

Pin \#	Function
13	VNN
14	NC
15	VPP
16	NC
17	GND
18	VDD
19	DIN
20	CLK
21	$\overline{\text { LE }}$
22	CLR
23	DOUT
24	NC

Pin \#	Function
25	SW15B
26	SW15A
27	SW14B
28	SW14A
29	SW13B
30	SW13A
31	SW12B
32	SW12A
33	SW11B
34	SW11A
35	NC
36	NC

Pin \#	Function
37	SW10B
38	SW10A
39	SW9B
40	SW9A
41	SW8B
42	SW8A
43	SW7B
44	SW7A
45	SW6B
46	SW6A
47	SW5B
48	SW5A

48-Lead LQFP Package Outline (FG)

$7.00 \times 7.00 \mathrm{~mm}$ body, 1.60 mm height (max), 0.50 mm pitch

View B

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	θ
Dimension (mm)	MIN	1.40*	0.05	1.35	0.17	8.80*	6.80*	8.80*	6.80*	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.45	$\begin{aligned} & 1.00 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°
	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00		0.60			$3.5{ }^{\circ}$
	MAX	1.60	0.15	1.45	0.27	9.20*	7.20*	9.20*	7.20*		0.75			7°

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.
Supertex Doc. \#: DSPD-48LQFPFG Version, D041309.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^1]
[^0]: * See Test Circuits on page 5

[^1]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

