

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

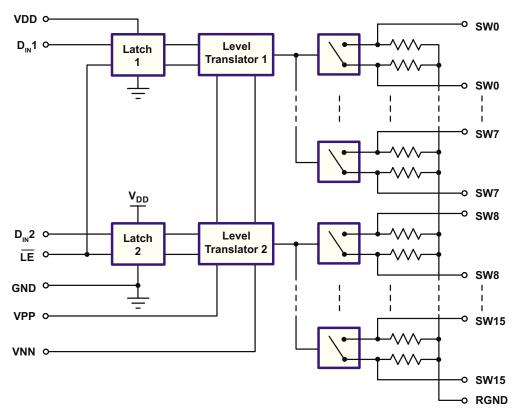
16-Channel (2 Banks of 8-Channels), High Voltage, Analog Switch With Bleed Resistors

Features

- ► HVCMOS® technology for high performance
- ▶ 220V operating conditions
- 22Ω typical output on-resistance
- Integrated bleed resistors on the outputs
- ▶ 3.3V and 5.0V CMOS logic compatibility
- ► Very low quiescent power dissipation (-10µA)
- ► -45dB min off isolation at 7.5MHz
- Low parasitic capacitance
- Excellent noise immunity
- ► Flexible operating supply voltages
- 48-lead LQFP package

Applications

- Medical ultrasound imaging
- Non-destructive evaluation


General Description

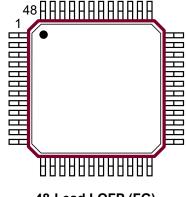
The Supertex HV2731 is a 220V, 16-channel, high voltage, analog switch integrated circuit (IC) with output bleed resistors (R_{INT}). The output switches are configured as 2 sets of 8 single pole, single throw analog switches. The IC is intended to be used in applications requiring high voltage switching controlled by low voltage control signals, such as ultrasound imaging.

The 2 sets of 8 analog switches are controlled by 2 input logic controls, $D_{IN}1$ and $D_{IN}2$. A logic high on $D_{IN}1$ will turn on switches 0 to 7 and a logic high on $D_{IN}2$ will turn on switches 8 to 15. The bleed resistors help to significantly reduce voltage built up on capacitive loads such as piezoelectric transducers connected to the outputs.

Using HVCMOS® technology, this device combines high voltage bilateral DMOS switches and low power CMOS logic to provide efficient control of high voltage analog signals.

Block Diagram

Ordering Information


Device	48-Lead LQFP 7.00x7.00mm body 1.60mm height (max) 0.50mm pitch
HV2731	HV2731FG-G

-G indicates package is RoHS compliant ('Green')

Pin Configuration

48-Lead LQFP (FG)
(top view)

Absolute Maximum Ratings

Parameter	Value
V _{DD} logic supply	-0.5V to +7.0V
V _{PP} -V _{NN} differential supply	225V
V _{PP} positive supply	-0.5V to V _{NN} +225V
V _{NN} negative supply	+0.5V to -225V
Logic input voltage	-0.5V to V _{DD} +0.3V
Analog signal range	$V_{_{\mathrm{NN}}}$ to $V_{_{\mathrm{PP}}}$
Peak analog signal current/channel	2.5A
Storage temperature	-65°C to 150°C
Power dissipation	1.0W

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Product Marking

Top Marking

Tyyww
HV2731FG
LLLLLLLL

YY = Year Sealed WW = Week Sealed L = Lot Number

Bottom Marking

C = Country of Origin* A = Assembler ID*

____ = "Green" Packaging
*May be part of top marking

Package may or may not include the following marks: Si or

48-Lead LQFP (FG)

Recommended Operating Conditions

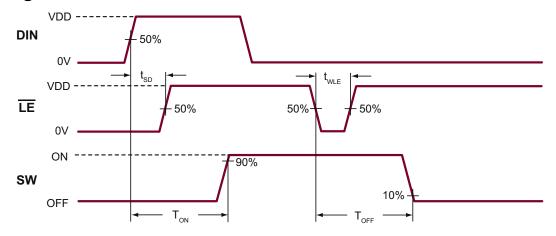
Sym	Parameter	Value
V _{DD}	Logic power supply voltage	3.0V to 5.5V
V _{PP}	Positive driver supply	+50V to +110V
V _{NN}	Negative high voltage supply	-10V to V _{PP} -220V
V _{IH}	High level input voltage	V_{DD} -1.0V to V_{DD}
$V_{_{\rm IL}}$	Low-level input voltage	0V to 1.0V
V _{SIG}	Analog signal voltage peak-to-peak	V_{NN} +10V to V_{PP} -10V
T _A	Operating free air temperature	0°C to 70°C

Notes:

- 1. Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
- 2. V_{SIG} must be $V_{NN} \le V_{SIG} \le V_{PP}$ or floating during power up/down transition.
- 3. Rise and fall times of power supplies V_{DD} , V_{PP} and V_{NN} should not be less than 1.0msec.

DC Electrical Characteristics (Over recommended operating conditions unless otherwise specified)

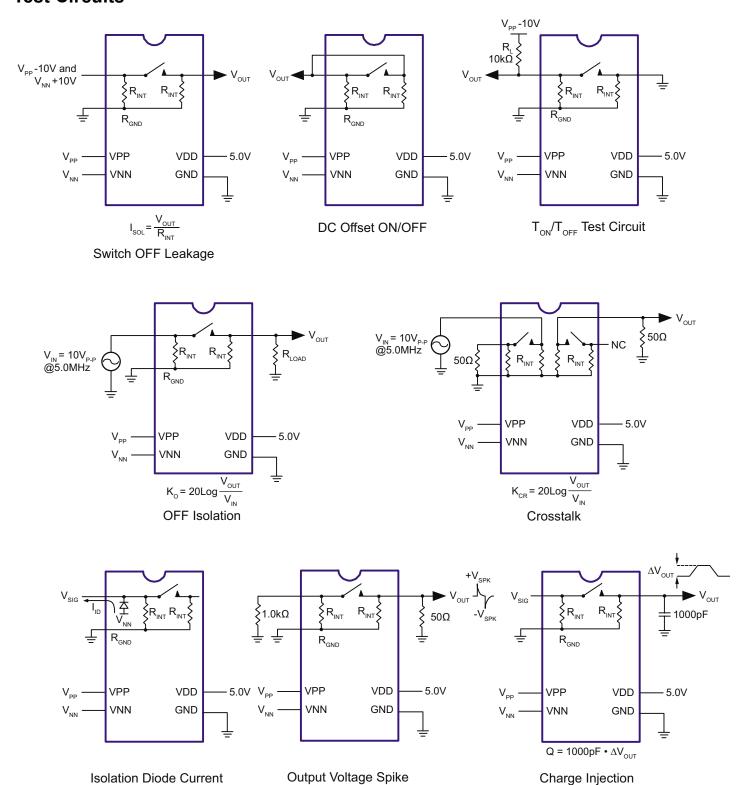
0			0°C		+25°C		+70°C		11	0 1111	
Sym	Parameter	Min	Max	Min	Тур	Max	Min	Max	Units	Conditions	
			30	-	26	32	-	40		$V_{SIG} = 0V, I_{SIG} = 5.0 \text{mA}, V_{PP} = +50V, V_{NN} = -170V$	
P	Small signal switch	-	25	-	22	27	-	35	Ω	$V_{SIG} = 0V, I_{SIG} = 200mA,$ $V_{PP} = +50V, V_{NN} = -170V$	
R _{ons}	on-resistance	-	25	-	22	27	-	30	22	$V_{SIG} = 0V, I_{SIG} = 5.0 \text{mA},$ $V_{PP} = +110V, V_{NN} = -110V$	
		-	20	-	18	22	-	25		$V_{SIG} = 0V, I_{SIG} = 200 \text{mA},$ $V_{PP} = +110V, V_{NN} = -110V$	
ΔR _{ons}	Small signal switch on-resistance matching	-	20	-	5.0	20	-	20	%	$V_{SIG} = 0V, I_{SIG} = 5.0 \text{mA},$ $V_{PP} = +110V, V_{NN} = -110V$	
R _{ONL}	Large signal switch on-resistance	-	-	-	15	-	-	-	Ω	V _{SIG} = 0V, I _{SIG} = 1.0A	
R _{INT}	Output switch shunt resistance	-	-	20	35	50	-	-	ΚΩ	Output switch to R_{GND} $I_{RINT} = 0.5 mA$	
I _{SOL}	Switch off-leakage per switch	-	5.0	-	1.0	10	-	15	μΑ	$V_{SIG} = V_{PP} - 10V, V_{NN} = +10V$	
V _{OS(OFF)}	DC offset switch off	-	300	-	100	300	-	300	mV	No load	
V _{OS(ON)}	DC offset switch on	-	500	-	100	500	-	500	IIIV	No load	
I _{PPQ}	Quiescent V _{PP} supply current	-	-	-	10	50	-	-	μΑ	All switches off	
I _{NNQ}	Quiescent V _{NN} supply current	-	-	-	-10	-50	-	-	μΛ	All Switches on	
I _{PPQ}	Quiescent V _{PP} supply current	-	-	-	10	50	-	-	μΑ	All switches on,	
I _{NNQ}	Quiescent V _{NN} supply current	-	-	-	-10	-50	-	-	μΛ	I _{SW} = 5.0mA	
I _{sw}	Switch output peak current	-	2.0	-	-	2.0	-	2.0	Α	V _{SIG} duty cycle < 0.1%	
f _{sw}	Output switching frequency	-	-	-	-	50	-	-	kHz	Duty cycle = 50%	
l _{PP}	Average V _{PP} supply current	-	8.1	-	-	8.8	-	10	Л	$V_{pp} = 50V$, $V_{NN} = -170V$, All	
I _{NN}	Average V _{NN} supply current	_	-8.1	-	-	-8.8	-	-10	mA	switches turning on and off at 50kHz	
I _{PP}	Average V _{PP} supply current	-	8.1	-	-	6.3	-	6.9		V _{PP} = 110V, V _{NN} = -110V, All	
I _{NN}	Average V _{NN} supply current	-	-8.1	-	-	-6.3	-	-6.9	mA	switches turning on and off at 50kHz	
I _{DDQ}	Quiescent V _{DD} supply current	-	10	-	-	10	-	10	μΑ	All logic inputs are static	
I _{DD}	Average V _{DD} supply current	-	2.0	-	-	2.0	-	2.0	mA	$\frac{D_{IN}}{LE} = D_{IN} 2 = 3.0 MHz,$ $\frac{D_{IN}}{LE} = high$	
C _{IN}	Logic input capacitance	-	10	-	-	10	-	10	pF		


AC Electrical Characteristics (Over recommended operating conditions unless otherwise specified)

Sym	Parameter	0°C		+25°C			+70°C		Unito	Conditions	
		Min	Max	Min	Тур	Max	Min	Max	Units	Conditions	
t _{wle}	Time width of LE	150	-	150	-	-	150	-	ns		
t _{wdin}	Time width of D _{IN}	150	-	150	-	-	150	-	ns		
t _{sd}	Set up time before LE rises	150	-	150	-	-	150	-	ns		

AC Electrical Characteristics (cont.) (Over recommended operating conditions unless otherwise specified)

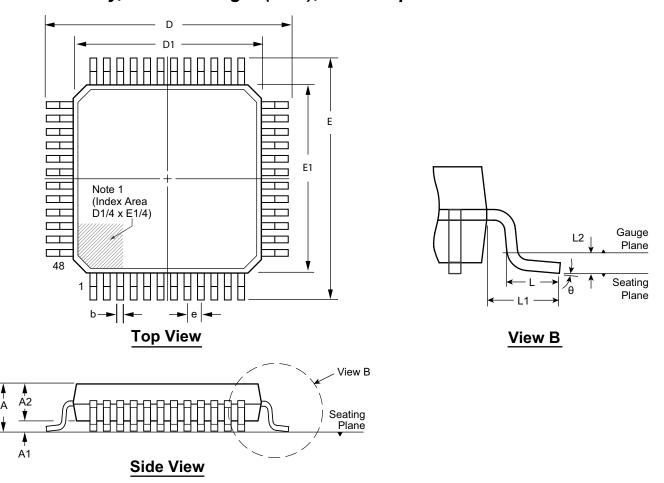
Crum	Baramatar	00	C	+25°C		+70°C		Hoite	Conditions		
Sym	Parameter	Min	Max	Min	Тур	Max	Min	Max	Units	Conditions	
t _{on}	Turn on time	-	5.0	-	-	5.0	-	5.0	ш	$V_{SIG} = V_{PP} -10V$	
t _{OFF}	Turn off time	-	5.0	-	-	5.0	-	5.0	μs	$R_{LOAD}^{SIG} = 10K\Omega$	
dv/dt	Maximum V _{SIG} slew rate	-	20	-	-	20	-	20	V/ns		
K _o	Off isolation	-30	-	-30	-33	-	-30	-	dB	f = 5.0MHz, load = 1.0KΩ//15pF	
			-	-45	-50	-	-45	-		$f = 7.5MHz, R_{LOAD} = 50\Omega$	
K _{CR}	Switch crosstalk	-45	-	-45	-	-	-45	-	dB	$f = 5.0MHz, R_{LOAD} = 50\Omega$	
I _{ID}	Output switch isolation diode current	-	300	-	-	300	-	300	mA	300ns pulse width, 2.0% duty cycle	
C _{SG(OFF)}	Off capacitance SW to GND	5.0	17	5.0	12	17	5.0	17	pF	V _{SIG} = 0V, f = 1.0MHz	
C _{SG(ON)}	On capacitance SW to GND	25	50	25	38	50	25	50	pF	V _{SIG} = 0V, f = 1.0MHz	
+V _{SPK}	Output voltage enike	-	-	-	250	-	-	-	m\/	D - 500	
-V _{SPK}	Output voltage spike	-	-	-	500	-	-	-	mV	$R_{LOAD} = 50\Omega$	
00	Charge injection	-	-	-	770	-	-	-	PC	V _{PP} = +50V, V _{NN} = -170V	
QC	Charge injection	-	-	-	620	-	-	-	10	V _{PP} = +110V, V _{NN} = -110V	


Logic Timing Waveforms

Truth Table

DIN2	DIN1	Œ	SW0 to SW7	SW8 to SW15			
L	L	L	OFF	OFF			
L	Н	L	ON	OFF			
Н	L	L	OFF	ON			
Н	Н	L	ON	ON			
X	X	Н	Hold Previous State				

Test Circuits



Pin Configuration

Pin	Function	Pin	Function
1	VNN	25	SW10
2	N/C	26	SW10
3	VPP	27	SW9
4	N/C	28	SW9
5	D _{IN} 1	29	SW8
6	D _{IN} 1 LE	30	SW8
7	D _{IN} 2	31	SW7
8	N/C	32	SW7
9	N/C	33	SW6
10	VDD	34	SW6
11	GND	35	SW5
12	N/C	36	SW5
13	RGND	37	SW4
14	SW15	38	N/C
15	SW15	39	SW4
16	SW14	40	N/C
17	SW14	41	SW3
18	SW13	42	SW3
19	SW13	43	SW2
20	SW12	44	SW2
21	SW12	45	SW1
22	SW11	46	SW1
23	SW11	47	SW0
24	N/C	48	SW0

48-Lead LQFP Package Outline (FG)

7.00x7.00mm body, 1.60mm height (max), 0.50mm pitch

Note:

 A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	D1	E	E1	е	L	L1	L2	θ	
	MIN	1.40*	0.05	1.35	0.17	8.80*	6.80*	8.80*	6.80*		0.45				0 °
Dimension (mm)	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00	0.50 BSC	0.60	1.00 REF	0.25 BSC	3.5°	
()	MAX	1.60	0.15	1.45	0.27	9.20*	7.20*	9.20*	7.20*	200	0.75			7 °	

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.

Drawings are not to scale.

Supertex Doc. #: DSPD-48LQFPFG Version, D041309.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http://www.supertex.com.

©2009 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

^{*} This dimension is not specified in the JEDEC drawing.