: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low Harmonic Distortion, 32-Channel, High Voltage Analog Switch IC

Features

- 32 Channels of high voltage analog switch
- 2:1 Multiplexer / Demultiplexer
- 3.3 or 5.0 V CMOS input logic level
- HVCMOS technology for high performance
- Very low quiescent power dissipation -10 A
- Low parasitic capacitance
- DC to 50 MHz analog signal frequency
- -60dB typical OFF-isolation at 5.0 MHz
- CMOS logic circuitry for low power
- Excellent noise immunity
- Flexible operating supply voltages

Applications

- Electromechanical relay replacement in medical ultrasound probes.

General Description

The Supertex HV2808 is a low harmonic distortion, 32-channel, high voltage analog switch integrated circuit (IC), designed for use in medical ultrasound imaging systems as a probe selection relay replacement. It serves as a 16PDT (16-pole, double throw) high voltage analog switch array. HV2808 is a very fast transducer multiplexer that consumes minimal power and emits no audible noise.

Using HVCMOS technology, this device combines high voltage bilateral DMOS switches and low power CMOS logic to provide efficient control of high voltage analog signals.

The device is suitable for various combinations of high voltage supplies, e.g., $\mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\mathrm{NN}}:+40 \mathrm{~V} /-160 \mathrm{~V},+100 \mathrm{~V} /-100 \mathrm{~V}$, and $+160 \mathrm{~V} /-40 \mathrm{~V}$.

The HV2808 comes in an $8 \times 8 \times 1.0 \mathrm{~mm}$, 56-Lead QFN package. Compared to an electromechanical relay, it not only saves considerable PCB area, but also saves on the PCB assembled height.

Block Diagram

Ordering Information

Part Number	Package Option	Packing
HV2808K6-G	56-Lead QFN (8x8)	250/Tray
HV2808K6-G M937	56-Lead QFN (8x8)	2000/Reel

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
V_{DD} logic supply	-0.5 V to +6.5 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$ differential supply	220 V
$\mathrm{~V}_{\mathrm{PP}}$ positive supply	-0.5 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$ negative supply	+0.5 V to -200 V
Logic input voltage	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog signal range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Thermal resistance, $\theta_{j a}$	$27^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance, $\theta_{j c}$	$0.5^{\circ} \mathrm{C} / \mathrm{W}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Typical Thermal Characteristics

Package	$\boldsymbol{\theta}_{\text {ja }}$
56-Lead QFN (K6)	$21^{\circ} \mathrm{C} / \mathrm{W}$

Recommended Operating Conditions

Sym	Parameter	Value
V_{DD}	Logic power supply voltage	3.0 to 5.5 V
$\mathrm{~V}_{\mathrm{PP}}$	Positive high voltage supply	+40 to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$	Negative high voltage supply	-40 to -160 V
$\mathrm{~V}_{\mathrm{IH}}$	High level input voltage	$0.9 \mathrm{~V}_{\mathrm{DD}}$ to V_{DD}
V_{IL}	Low level input voltage	0 to $0.1 \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{V}_{\mathrm{SIG}}$	Analog signal voltage peak-to-peak	$\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating free air temperature	0 to $70^{\circ} \mathrm{C}$

Notes:

1. Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
2. $V_{S I G}$ must be $V_{N N} \leq V_{S I G} \leq V_{P P}$ or floating during power up/down transition.
3. Rise and fall times of power supplies $V_{D D}, V_{P P}$ and $V_{N N}$ should not be less than 1.0 msec .

DC Electrical Characteristics
(Over recommended operating conditions unless otherwise specified)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Unit	Conditions		
		Min	Max	Min	Typ	Max	Min	Max				
$\mathrm{R}_{\text {ONS }}$	Small signal switch ON-resistance	-	30	-	26	38	-	48	Ω	$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+40 \mathrm{~V} \\ & V_{N N}=-160 \mathrm{~V} \end{aligned}$	
		-	25	-	22	27	-	32		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
		-	25	-	22	27	-	30		$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+100 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$	
		-	18	-	18	24	-	27		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
		-	23	-	20	25	-	30		$\mathrm{I}_{\text {SIG }}=5.0 \mathrm{~mA}$	$\begin{aligned} & V_{P P}=+160 \mathrm{~V}, \\ & V_{N N}=-40 \mathrm{~V} \end{aligned}$	
		-	22	-	16	25	-	27		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$		
$\Delta R_{\text {ONS }}$	Small signal switch ON-resistance matching	-	20	-	5.0	20	-	20	\%	$\begin{aligned} & \mathrm{I}_{\mathrm{SIG}}=5.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$		
$\mathrm{R}_{\text {ONL }}$	Large signal switch ON-resistance	-	-	-	15	-	-	-	Ω	$V_{S I G}=V_{P P}-10 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1 \mathrm{~A}$		
$\mathrm{I}_{\text {SOL }}$	Switch OFF-leakage per switch	-	5.0	-	1.0	10	-	15	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}+10 \mathrm{~V}$		
$\mathrm{V}_{\text {os }}$	DC offset switch OFF	-	300	-	100	300	-	300	mV	100k Ω load		
	DC offset switch ON	-	500	-	100	500	-	500				
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches OFF		
$\mathrm{I}_{\mathrm{NNQ}}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current	-	-	-	-10	-50	-	-				
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches ON,$\mathrm{I}_{\mathrm{sw}}=5.0 \mathrm{~mA}$		
$\mathrm{I}_{\mathrm{NNQ}}$	Quiescent $\mathrm{V}_{\text {NN }}$ supply current	-	-	-	-10	-50	-	-				
$\mathrm{I}_{\text {sw }}$	Switch output peak current	-	3.0	-	3.0	2.0	-	2.0	A	$\mathrm{V}_{\text {SIG }}$ duty cycle $<0.1 \%$		
$\mathrm{f}_{\text {sw }}$	Output switching frequency	-	-	-	-	50	-	-	kHz	Duty cycle = 50\%		
$I_{\text {PP }}$	Average V_{PP} supply current	-	13	-	-	14	-	16	mA	$\begin{aligned} & V_{P P}=+40 \mathrm{~V} \\ & V_{N N}=-160 \mathrm{~V} \end{aligned}$	All output switches are turning ON and OFF at 50 kHz with no load	
		-	8.0	-	-	10	-	11		$\begin{aligned} & V_{P P}=+100 \mathrm{~V} \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$		
		-	8.0	-	-	10	-	11		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$		
I_{NN}	Average V_{NN} supply current	-	13	-	-	14	-	16	mA	$\begin{aligned} & V_{P P}=+40 \mathrm{~V} \\ & V_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$	All output switches are turning ON and OFF at 50 kHz with no load	
		-	8.0	-	-	10	-	11		$\begin{aligned} & V_{P P}=+100 \mathrm{~V}, \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$		
		-	8.0	-	-	10	-	11		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$		
I_{DD}	V_{DD} supply current	-	0.1	-	-	0.1	-	0.1	mA	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} @ 50 \mathrm{kHz} \mathrm{CW}$		
$\mathrm{I}_{\text {DDQ }}$	Quiescent V_{DD} supply current	-	10	-	-	10	-	10	$\mu \mathrm{A}$	All logic inputs are static		
$\mathrm{C}_{\text {IN }}$	Logic input capacitance	-	10	-	-	10	-	10	pF	---		

* See Test Circuits on page 5

AC Electrical Characteristics (Over recommended operating conditions unless otherwise specified)

Sym	Parameter	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			+70 ${ }^{\circ} \mathrm{C}$		Unit	Conditions
		Min	Max	Min	Typ	Max	Min	Max		
t_{ON}	Turn ON time	-	30	-	15	30	-	30	$\mu \mathrm{s}$	$\begin{aligned} & V_{\text {SIG }}=V_{\text {PP }}-10 \mathrm{~V}, V_{\text {PP }}=+100 \mathrm{~V}, \\ & R_{\text {LOAD }}=10 \mathrm{k} \Omega, V_{\text {NN }}=-100 \mathrm{~V} \end{aligned}$
$\mathrm{t}_{\text {OFF }}$	Turn OFF time	-	30	-	15	30	-	30		
dv/dt	Maximum $\mathrm{V}_{\text {SIG }}$ slew rate	-	20	-	-	20	-	20	V/ns	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}$
		-	20	-	-	20	-	20		$\mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-100 \mathrm{~V}$
		-	20	-	-	20	-	20		$\mathrm{V}_{\text {PP }}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}$
K	OFF isolation	-30	-	-30	-33	-	-30	-	dB	$\begin{aligned} & \mathrm{f}=5.0 \mathrm{MHz}, \\ & 1.0 \mathrm{k} \Omega / / 15 \mathrm{pF} \text { load } \end{aligned}$
		-58	-	-58	-	-	-58	-		$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load
K_{CR}	Switch crosstalk	-60	-	-60	-70	-	-60	-	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load
I_{10}	Output switch isolation diode current	-	300	-	-	300	-	300	mA	300 ns pulse width, 2.0\% duty cycle
$\mathrm{C}_{\text {SG(OFF) }}$	OFF capacitance SW to GND	-	14	-	9.0	14	-	14	pF	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{C}_{\text {SG(ON) }}$	ON capacitance SW to GND	-	33	-	23	33	-	33	pF	$V_{\text {SIIG }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$ One SW on, one SW off
	Capacitance Y to GND	-	33	-	23	33	-	33		
$+\mathrm{V}_{\text {SPK }}$	Output voltage spike SW	-	250	-	-	250	-	250	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$
$-V_{\text {sPK }}$		-	250	-	-	250	-	250		
$+V_{\text {SPK }}$		-	250	-	-	250	-	250		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$
$-V_{\text {sPK }}$		-	250	-	-	250	-	250		
$+V_{\text {SPK }}$		-	250	-	-	250	-	250		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$
$-V_{\text {SPK }}$		-	250	-	-	250	-	250		
$+V_{\text {SPK }}$	Output voltage spike Y	-	250	-	-	250	-	250	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$
$-V_{\text {sPK }}$		-	250	-	-	250	-	250		
$+V_{\text {SPK }}$		-	250	-	-	250	-	250		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$
$-V_{\text {SPK }}$		-	250	-	-	250	-	250		
$+\mathrm{V}_{\text {SPK }}$		-	250	-	-	250	-	250		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$
$-V_{\text {SPK }}$		-	250	-	-	250	-	250		
QC	Charge injection	-	-	-	1020	-	-	-	pC	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}$
		-	-	-	700	-	-	-		$\mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-100 \mathrm{~V}$
		-	-	-	370	-	-	-		$\mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-40 \mathrm{~V}$

* See Test Circuits on page 5

Truth Table

A/B	Switch Status
H	SW0, 2, 4...30 ON, SW1, 3, 5...31 OFF
L	SW0, 2, 4...30 OFF, SW1, 3, 5...31 ON

Test Circuits

Pin Function

Pin	Function
1	Y2829
2	SW29
3	SW30
4	Y3031
5	SW31
6	NC
7	VDD
8	A/B
9	GND
10	SW0
11	Y01
12	SW1
13	SW2
14	Y23

Pin	Function
15	SW3
16	SW4
17	Y45
18	SW5
19	SW6
20	Y67
21	SW7
22	SW8
23	Y89
24	SW9
25	SW10
26	Y1011
27	SW11
28	SW12

Pin	Function
29	Y1213
30	SW13
31	VNN
32	SW14
33	Y1415
34	SW15
35	VPP
36	VPP
37	SW16
38	Y1617
39	SW17
40	VNN
41	SW18
42	Y1819

Pin	Function
43	SW19
44	SW20
45	Y2021
46	SW21
47	SW22
48	Y2223
49	SW23
50	SW24
51	Y2425
52	SW25
53	SW26
54	Y2627
55	SW27
56	SW28

VSUB (Thermal Pad)
The central thermal pad on the bottom of package must be connected to VNN externally

56-Lead QFN Package Outline (K6)

$8.00 x 8.00 \mathrm{~mm}$ body, 1.00 mm height (max), 0.50 mm pitch

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
2. Depending on the method of manufacturing, a maximum of 0.15 mm pullback (L1) may be present.
3. The inner tip of the lead may be either rounded or square.

Symbol		A	A1	A3	b	D	D2	E	E2	e	L	L1	θ
Dimension (mm)	MIN	0.80	0.00	$\begin{aligned} & 0.20 \\ & \text { REF } \end{aligned}$	0.18	7.85*	2.75	7.85*	2.75	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.30	0.00	0°
	NOM	0.90	0.02		0.25	8.00	5.70	8.00	5.70		0.40	-	-
	MAX	1.00	0.05		0.30	8.15*	6.70^{+}	8.15*	$6.70{ }^{+}$		0.50	0.15	14°

[^0](The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^1]
[^0]: JEDEC Registration MO-220, Variation VLLD-2, Issue K, June 2006.

 * This dimension is not specified in the JEDEC drawing.
 \dagger This dimension differs from the JEDEC drawing.
 Drawings are not to scale.
 Supertex Doc.\#: DSPD-56QFNK68X8P050, Version A031010.

[^1]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

