: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HV2802/HV2902

Low Harmonic Distortion, 32-Channel SPST, High-Voltage Analog Switch

Features

- 32-Channel SPST (Single-Pole, Single-Throw) High-Voltage Analog Switch
- 3.3V or 5.0V CMOS Input Logic Level
- 20 MHz Data Shift Clock Frequency
- High-Voltage CMOS (HVCMOS) Technology for High Performance
- Very Low Quiescent Power Dissipation (10 $\mu \mathrm{A}$)
- Low Parasitic Capacitance
- DC to 50 MHz Analog Signal Frequency
- -60 dB Typical OFF-Isolation at 5.0 MHz
- CMOS Logic Circuitry for Low Power
- Excellent Noise Immunity
- Cascadable Serial Data Register with Latches
- Flexible Operating Supply Voltages
- Integrated Bleed Resistors on the Outputs (HV2902 only)

Applications

- Medical Ultrasound Imaging
- Non-Destructive Testing (NDT) Metal Flaw Detection
- Piezoelectric Transducer Drivers
- Inkjet Printer Heads
- Optical MEMS Modules

General Description

The HV2802 and HV2902 are low-charge injection, 32-channel, high-voltage analog switches intended for use in applications requiring high-voltage switching controlled by low-voltage control signals, such as medical ultrasound imaging, driving piezoelectric transducers and printers. The HV2902 has integrated bleed resistors which eliminate voltage build-up on capacitive loads such as piezoelectric transducers.
Input data are shifted into a 32-bit shift register that can then be retained in a 32-bit latch. To reduce any possible clock feedthrough noise, the latch enable bar should be left high until all bits are clocked in. Data are clocked in during the rising edge of the clock. Using the HVCMOS technology, this device combines high-voltage bilateral DMOS switches and low-power CMOS logic to provide efficient control of high-voltage analog signals.

The device is suitable for various combinations of high-voltage supplies, e.g., $\mathrm{V}_{\mathrm{Pp}} / \mathrm{V}_{\mathrm{NN}}$: $+40 \mathrm{~V} /-160 \mathrm{~V}$, $+100 \mathrm{~V} /-100 \mathrm{~V}$ and $+160 \mathrm{~V} /-40 \mathrm{~V}$.

Package Type

	HV2802/HV2902$9 \times 9 \times 1.0 \mathrm{~mm}$ VFBGA*Top View												
	1	2	3	4	5	6	7	8	910	10	11	12	
A	0		0	0	0	0	0	0		0	0		0
B	0	0		0	0	0	0	0	0	0	0	0	0
C	0	0										0	0
D	0	0										0	0
E	0	O										0	0
F	0	0										0	0
G	0	0										0	0
H	0	O										0	0
J	0	0										0	0
K	0	0										0	0
L	0	0										0	0
M	0	0				0	0	0	0			0	0
N	0	0		0	0	0	O	0	O			0	0

*See Section 2.0 "Package Pin Configurations and Functions Description"

HV2802/HV2902

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings \dagger
$V_{D D}$ Logic Supply Voltage -0.5 V to +6.5 V
$V_{P P}-V_{N N}$ Differential Supply 220V
$V_{\text {PP }}$ Positive Supply -0.5 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
$\vee_{\text {NN }}$ Negative Supply +0.5 V to -200 V
Logic Input Voltage -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog Signal Range V_{NN} to V_{PP}
Peak Analog Signal Current/Channel 3.0A
Power Dissipation 1.5W
\dagger Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Note 1-3)

Parameter	Symbol	Value
Logic Power Supply Voltage	V_{DD}	+3.0 V to +5.5 V
Positive Voltage Supply	V_{PP}	+40 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
Negative Voltage Supply	V_{NN}	-40 V to -160 V
High-Level Input Voltage	V_{IH}	$0.9 \mathrm{~V}_{\mathrm{DD}}$ to V_{DD}
Low-Level Input Voltage	V_{IL}	0 V to $0.1 \mathrm{~V}_{\mathrm{DD}}$
Analog Signal Voltage Peak-to-Peak	$\mathrm{V}_{\mathrm{SIG}}$	$\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$

Note 1: Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
2: $\quad \mathrm{V}_{\text {SIG }}$ must be $\mathrm{V}_{\text {NN }} \leq \mathrm{V}_{\text {SIG }} \leq \mathrm{V}_{\mathrm{PP}}$ or floating during power up/down transition.
3: Rise and fall times of power supplies $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{PP}}$, and V_{NN} should not be less than 1.0 ms .

HV2802/HV2902

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$, Specification at $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ based on characterization and not 100% tested.

Parameters	Symbol	$0^{\circ} \mathrm{C}$		+ $\mathbf{2 5}^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		Min.	Max.	Min.	Typ.	Max.	Min.	Max.		
Small Signal Switch ON-Resistance	$\mathrm{R}_{\text {ONS }}$	-	30	-	26	38	-	48	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{SIG}}=5.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$
		-	25	-	22	27	-	32		$\begin{aligned} & I_{\text {SIG }}=200 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$
		-	25	-	22	27	-	30		$\begin{array}{\|l} \hline I_{\text {SIG }}=5.0 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \\ \hline \end{array}$
		-	18	-	18	24	-	27		$\begin{aligned} & I_{\text {SIG }}=200 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$
		-	23	-	20	25	-	30		$\begin{aligned} & I_{S I G}=5.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$
		-	22	-	16	25	-	27		$\begin{aligned} & I_{\text {SIG }}=200 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$
Small Signal Switch ON-Resistance Matching	$\Delta \mathrm{R}_{\mathrm{ONS}}$	-	20	-	5	20	-	20	\%	$\begin{aligned} & I_{\mathrm{SIG}}=5.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$
Large Signal Switch ON-Resistance (Note 1)	$\mathrm{R}_{\mathrm{ONL}}$	-	-	-	15	-	-	-	Ω	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1 \mathrm{~A}$
Value of Output Bleed Resistor	$\mathrm{R}_{\mathrm{INT}}$	-	-	20	35	50	-	-	k Ω	Output switch to RGND $\mathrm{I}_{\mathrm{RINT}}=0.5 \mathrm{~mA}$
Switch off Leakage per Switch	ISOL	-	5	-	1	10	-	15	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}+10 \mathrm{~V}$
Switch DC Offset	V_{OS}	-	300	-	100	300	-	300	mV	$\begin{aligned} & \text { Switch OFF, } \\ & R_{\text {LOAD }}=100 \mathrm{k} \Omega \text { for HV2802 } \\ & \text { No load for HV2902 } \end{aligned}$
		-	500	-	100	500	-	500		$\begin{array}{\|l} \hline \text { Switch ON } \\ R_{\text {LOAD }}=100 \mathrm{k} \Omega \text { for HV2802 } \\ \text { No load for HV2902 } \\ \hline \end{array}$
Quiescent V_{PP} Supply Current	$\mathrm{I}_{\mathrm{PPQ}}$	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches off
Quiescent V_{NN} Supply Current	$\mathrm{I}_{\mathrm{NNQ}}$	-	-	-	10	50	-	-		
Quiescent $\mathrm{V}_{\text {PP }}$ Supply Current	$\mathrm{I}_{\mathrm{PPQ}}$	-	-	-	10	50	-	-	$\mu \mathrm{A}$	All switches on,$\mathrm{I}_{\mathrm{SW}}=5.0 \mathrm{~mA}$
Quiescent V_{NN} Supply Current	${ }^{\text {INNQ }}$	-	-	-	10	50	-	-		
Switch Output Peak Current (Note 1)	$\mathrm{I}_{\text {SW }}$	-	-	2	3	-	-	-	A	$\mathrm{V}_{\text {SIG }}$ duty cycle $<0.1 \%$
Output Switching Frequency (Note 1)	$\mathrm{f}_{\text {SW }}$	-	-	-	-	50	-	-	kHz	Duty cycle = 50\%

Note 1: Specification is obtained by characterization and is not 100% tested.
2: Design guidance only.

DC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$, Specification at $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ based on characterization and not 100% tested.

Parameters	Symbol	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions
		Min.	Max.	Min.	Typ.	Max.	Min.	Max.		
Average V_{PP} Supply Current	I_{PP}	-	14	-	-	14	-	14	mA	$V_{P P}=+40 \mathrm{~V}, V_{N N}=-160 \mathrm{~V}$ All output switches are turning on and off at 50 kHz with no load
		-	14	-	-	14	-	14		$V_{P P}=+100 \mathrm{~V}, V_{N N}=-100 \mathrm{~V}$ All output switches are turning on and off at 50 kHz with no load
		-	14	-	-	14	-	14		$V_{P P}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}$ All output switches are turning on and off at 50 kHz with no load
Average $\mathrm{V}_{\text {NN }}$ Supply Current	I_{NN}	-	14	-	-	14	-	14	mA	$V_{P P}=+40 \mathrm{~V}, V_{N N}=-160 \mathrm{~V}$ All output switches are turning on and off at 50 kHz with no load
		-	14	-	-	14	-	14		$V_{P P}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$ All output switches are turning on and off at 50 kHz with no load
		-	14	-	-	14	-	14		$V_{P P}=+160 \mathrm{~V}, V_{N N}=-40 \mathrm{~V}$ All output switches are turning on and off at 50 kHz with no load
Average V_{DD} Supply Current	I_{DD}	-	8	-	-	8	-	8	mA	$\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
Quiescent $V_{D D}$ Supply Current	$\mathrm{I}_{\mathrm{DDQ}}$	-	10	-	-	10	-	10	$\mu \mathrm{A}$	All logic inputs are static
Data Out Source Current	$\mathrm{I}_{\text {SOR }}$	0.45	-	0.45	0.70	-	0.40	-	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}-0.7 \mathrm{~V}$
Data Out Sink Current	$\mathrm{I}_{\text {SINK }}$	0.45	-	0.45	0.70	-	0.40	-	mA	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$
Logic Input Capacitance (Note 2)	C_{IN}	-	10	-	-	10	-	10	pF	

Note 1: Specification is obtained by characterization and is not 100% tested.
2: Design guidance only.

HV2802/HV2902

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$, Specification at $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ based on characterization and not 100% tested.

Parameters	Symbol	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Conditions	
		Min.	Max.	Min.	Typ.	Max.	Min.	Max.			
Set Up Time Before $\overline{\text { LE }}$ Rises (Note 1)	${ }^{\text {t }}$ SD	25	-	25	-	-	25	-	ns		
Time Width of $\overline{\mathrm{LE}}$ (Note 1)	${ }^{\text {twLE }}$	56	-	56	-	-	56	-	ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	
		12	-	12	-	-	12	-		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	
Clock Delay Time to Data Out (Note 1)	t_{DO}	8	40	8	19	40	8	40	ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	
		8	30	8	15	30	8	30		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	
Time Width of CLR (Note 1)	$\mathrm{t}_{\text {WCLR }}$	55	-	55	-	-	55	-	ns		
Set Up Time Data to Clock (Note 1)	t_{SU}	21	-	21	-	-	21	-	ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	
		7	-	7	-	-	7	-		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	
Hold Time Data from Clock (Note 1)	t_{H}	5	-	5	-	-	5	-	ns	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	
		7	-	7	-	-	7	-		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	
Clock Frequency	$\mathrm{f}_{\text {CLK }}$	-	8	-	-	8	-	8	MHz	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	
		-	20	-	-	20	-	20		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	
Clock Rise and Fall Times	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	-	50	-	-	50	-	50	ns		
Turn ON Time	t_{ON}	-	5	-	-	5	-	5	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=10 \mathrm{k} \Omega \end{aligned}$	
Turn OFF Time	$\mathrm{t}_{\text {OFF }}$	-	5	-	-	5	-	5			
Maximum $\mathrm{V}_{\text {SIG }}$ Slew Rate (Note 1)	dv/dt	-	-	-	-	20	-	-	V/ns	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-160 \mathrm{~V}$	
		-	-	-	-	20	-	-		$\mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$	
		-	-	-	-	20	-	-		$\mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}$	
OFF Isolation (Note 1)	K_{O}	-	-	-	-33	-30	-	-	dB	$\begin{aligned} & \hline \mathrm{f}=5.0 \mathrm{MHz}, \\ & 1.0 \mathrm{k} \Omega \\| 15 \mathrm{pF} \text { load } \end{aligned}$	
		-	-	-	-60	-58	-	-		$\begin{array}{\|l\|} \hline \mathrm{f}=5.0 \mathrm{MHz}, \\ 50 \Omega \text { load } \\ \hline \end{array}$	
Switch Crosstalk (Note 1)	K_{CR}	-	-	-	-70	-60	-	-	dB	$\begin{aligned} & f=5.0 \mathrm{MHz}, \\ & 50 \Omega \text { load } \end{aligned}$	
Output Switch Isolation Diode Current (Note 1)	I_{ID}	-	-	-	-	300	-	-	mA	300 ns pulse width, 2.0\% duty cycle	
Off Capacitance SW to GND (Note 1)	$\mathrm{C}_{\text {SG(OFF) }}$	-	-	-	10	15	-	-	pF	OV, f = 1.0 MHz	
On Capacitance SW to GND (Note 1)	$\mathrm{C}_{\mathrm{SG}(\mathrm{ON})}$	-	-	-	13	18	-	-			
Output Voltage Spike SWA, SWB (Note 1)	$+\mathrm{V}_{\text {SPK }}$	-	-	-	-	+150	-	-	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$	
	$-V_{\text {SPK }}$	-	-	-150	-	-	-	-			
	$+\mathrm{V}_{\text {SPK }}$	-	-	-	-	+150	-	-		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$	
	$-V_{\text {SPK }}$	-	-	-150	-	-	-	-			
	$+\mathrm{V}_{\text {SPK }}$	-	-	-	-	+150	-	-		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{LOAD}}=50 \Omega \end{aligned}$	
	$-V_{\text {SPK }}$	-	-	-150	-	-	-	-			
Charge Injection (per switch) (Note 1)	QC	-	-	-	820	-	-	-	pC	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}$	
		-	-	-	600	-	-	-		$\mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$	
		-	-	-	350	-	-	-		$\mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}$	

Note 1: Specification is obtained by characterization and is not 100% tested.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions	
Temperature Ranges							
Operating Temperature	T_{A}	0	-	+70	${ }^{\circ} \mathrm{C}$		
Storage Temperature	T_{A}	-65	-	+150	${ }^{\circ} \mathrm{C}$		
Package Thermal Resistance							
Thermal Resistance, 78-Ball VFBGA	θ_{JA}	-	32.2	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$		

HV2802/HV2902

1.1 Logic Timing and Truth Table

FIGURE 1-1: Logic Timing Waveforms.
TABLE 1-1: TRUTH TABLE (Notes 1-6)

D0	D1	...	D15	D16	...	D31	$\overline{\text { LE }}$	CLR	SW0	SW1	...	SW15	SW16	...	SW31
L	-	...	-	-	...	-	L	L	OFF	-	...	-	-	...	-
H	-		-	-		-	L	L	ON	-		-	-		-
-	L		-	-		-	L	L	-	OFF		-	-		-
-	H		-	-		-	L	L	-	ON		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		L	-		-	L	L	-	-		OFF	-		-
-	-		H	-		-	L	L	-	-		ON	-		-
-	-		-	L		-	L	L	-	-		-	OFF		-
-	-		-	H		-	L	L	-	-		-	ON		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		-	L	L	-	-		-	-		-
-	-		-	-		L	L	L	-	-		-	-		OFF
-	-		-	-		H	L	L	-	-		-	-		ON
X	X	X	X	X	x	X	H	L			D	EVIOU	STAT		
X	X	X	X	X	X	X	X	H			L S	VITCHES	S OFF		

Legend: $X=$ Do not care; $L=$ Low; $H=$ High.
Note 1: The 32 switches operate independently.
2: Serial data is clocked in on the L to H transition of the CLK.
3: All 32 switches go to a state retaining their latched condition at the rising edge of $\overline{\mathrm{LE}}$. When $\overline{\mathrm{LE}}$ is low, the shift register's data flow through the latch.
4: $D_{\text {Out }}$ is high when data in register 31 is high.
5: Shift register's clocking has no effect on the switch states if $\overline{\text { LE }}$ is high.
6: The CLR clear input overrides all other inputs.

2.0 PACKAGE PIN CONFIGURATIONS AND FUNCTIONS DESCRIPTION

This section details the pin designation for the 78-Ball VFBGA package (Figure 2-1). The descriptions of the pins are listed in Table 2-1.

FIGURE 2-1: 78-Ball VFBGA Package - Top View.

HV2802/HV2902

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Symbol		Description
	9x9x1.0 VFBGA		
	HV2802	HV2902	
A1	SW2B	SW2B	Analog switch 2 terminal B
A3	SW1B	SW1B	Analog switch 1 terminal B
A4	SW0B	SW0B	Analog switch 0 terminal B
A5	DOUT	D OUT	Data out logic output
A6	GND	GND	Ground
A7	$V_{D D}$	$V_{D D}$	Logic supply voltage
A8	$\overline{\text { LE }}$	$\overline{\text { LE }}$	Latch enable logic input, low active
A10	SW31A	SW31A	Analog switch 31 terminal A
A11	SW30A	SW30A	Analog switch 30 terminal A
A13	SW29B	SW29B	Analog switch 29 terminal B
B1	SW3A	SW3A	Analog switch 3 terminal A
B2	SW2A	SW2A	Analog switch 2 terminal A
B4	SW1A	SW1A	Analog switch 1 terminal A
B5	SW0A	SW0A	Analog switch 0 terminal A
B6	NC	RGND	No connect / Ground for bleed resistor
B7	$\mathrm{D}_{\text {IN }}$	$\mathrm{D}_{\text {IN }}$	Data in logic input
B8	CLK	CLK	Clock logic input for shift register
B9	CLR	CLR	Latch clear logic input
B10	SW31B	SW31B	Analog switch 31 terminal B
B11	SW30B	SW30B	Analog switch 30 terminal B
B12	SW28B	SW28B	Analog switch 28 terminal B
B13	SW29A	SW29A	Analog switch 29 terminal A
C1	SW4A	SW4A	Analog switch 4 terminal A
C2	SW3B	SW3B	Analog switch 3 terminal B
C12	SW27B	SW27B	Analog switch 27 terminal B
C13	SW28A	SW28A	Analog switch 28 terminal A
D1	SW5A	SW5A	Analog switch 5 terminal A
D2	SW4B	SW4B	Analog switch 4 terminal B
D12	SW26B	SW26B	Analog switch 26 terminal B
D13	SW27A	SW27A	Analog switch 27 terminal A
E1	SW6A	SW6A	Analog switch 6 terminal A
E2	SW5B	SW5B	Analog switch 5 terminal B
E12	SW25B	SW25B	Analog switch 25 terminal B
E13	SW26A	SW26A	Analog switch 26 terminal A
F1	SW7A	SW7A	Analog switch 7 terminal A
F2	SW6B	SW6B	Analog switch 6 terminal B
F12	SW24B	SW24B	Analog switch 24 terminal B
F13	SW25A	SW25A	Analog switch 25 terminal A
G1	SW8A	SW8A	Analog switch 8 terminal A
G2	SW7B	SW7B	Analog switch 7 terminal B
G12	SW23B	SW23B	Analog switch 23 terminal B
G13	SW24A	SW24A	Analog switch 24 terminal A

TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)

Pin Number			Description
	9x9x1.0 VFBGA		
	HV2802	HV2902	
H1	SW9A	SW9A	Analog switch 9 terminal A
H2	SW8B	SW8B	Analog switch 8 terminal B
H12	SW22B	SW22B	Analog switch 22 terminal B
H13	SW23A	SW23A	Analog switch 23 terminal A
J1	SW10A	SW10A	Analog switch 10 terminal A
J2	SW9B	SW9B	Analog switch 9 terminal B
J12	SW21B	SW21B	Analog switch 21 terminal B
J13	SW22A	SW22A	Analog switch 22 terminal A
K1	SW11A	SW11A	Analog switch 11 terminal A
K2	SW10B	SW10B	Analog switch 10 terminal B
K12	SW20B	SW20B	Analog switch 20 terminal B
K13	SW21A	SW21A	Analog switch 21 terminal A
L1	SW12A	SW12A	Analog switch 12 terminal A
L2	SW11B	SW11B	Analog switch 11 terminal B
L12	SW19B	SW19B	Analog switch 19 terminal B
L13	SW20A	SW20A	Analog switch 20 terminal A
M1	SW13A	SW13A	Analog switch 13 terminal A
M2	SW12B	SW12B	Analog switch 12 terminal B
M6	SW14A	SW14A	Analog switch 14 terminal A
M7	SW15A	SW15A	Analog switch 15 terminal A
M8	SW16A	SW16A	Analog switch 16 terminal A
M9	SW17A	SW17A	Analog switch 17 terminal A
M10	NC	RGND	No connect/Ground for bleed resistor
M12	SW18A	SW18A	Analog switch 18 terminal A
M13	SW19A	SW19A	Analog switch 19 terminal A
N1	SW13B	SW13B	Analog switch 13 terminal B
N2	V_{NN}	V_{NN}	Negative supply voltage
N4	$V_{\text {PP }}$	V_{PP}	Positive supply voltage
N5	NC	RGND	No connect/Ground for bleed resistor
N6	SW14B	SW14B	Analog switch 14 terminal B
N7	SW15B	SW15B	Analog switch 15 terminal B
N8	SW16B	SW16B	Analog switch 16 terminal B
N9	SW17B	SW17B	Analog switch 17 terminal B
N10	$V_{P P}$	V_{PP}	Positive supply voltage
N12	V_{NN}	V_{NN}	Negative supply voltage
N13	SW18B	SW18B	Analog switch 18 terminal B

HV2802/HV2902

3.0 TEST CIRCUIT EXAMPLES

This section details test circuit examples for a few electrical characteristics. The RGND pins are found only on the HV2902 device. The Switch DC Offset of HV2802 needs $100 \mathrm{k} \Omega$ external load.

FIGURE 3-1:
Switch Off Leakage per Switch.

FIGURE 3-2:
Switch DC Offset.

FIGURE 3-3: $\quad T_{\text {ON }} / T_{\text {OFF }}$ Test Circuit.

FIGURE 3-4: Off Isolation.

FIGURE 3-5: Output Switch Isolation Diode Current.

FIGURE 3-6: Switch Crosstalk.

FIGURE 3-7:
Charge Injection.

FIGURE 3-8: Output Voltage Spike.

4.0 DETAILED DESCRIPTION AND APPLICATION INFORMATION

The high-voltage analog switches are used for multiplexing a piezoelectric transducer array in a probe to multiple channel transmitters (Tx) arrays in a medical ultrasound system.

Figure 4-1 shows a typical medical ultrasound image system comprising 64-channels of transmit pulsers, 64-channels of receivers (LNA and ADC) and 64-channels of T/R switches connecting to 192 elements of an ultrasound transducer probe via a high-voltage analog switch array.

FIGURE 4-1: Typical Medical Ultrasound Imaging System.

The HV2802/HV2902 devices are comprised of two main circuitries:

- A low-power CMOS digital serial interface powered by V_{DD} to control the high-voltage analog switches
- High-voltage bilateral analog switch.

High-voltage supplies V_{PP} and V_{NN} are needed by the high-voltage level translation circuitry to control the states of the output high-voltage analog switches. In addition, each high-voltage analog switch can be independently controlled because each switch is controlled via a corresponding latch. A 32-bit shift register and 32 latches allow the user to serially load data into the registers, and after completion, to load the data onto the latches that control the states of the high-voltage analog switches.
The HV2802/HV2902 have a digital serial interface consisting of logic signals, Data In ($\mathrm{D}_{\text {IN }}$), Clock (CLK), Data Out ($\mathrm{D}_{\mathrm{OUT}}$), Latch Enable ($\overline{\mathrm{LE}}$) and Clear (CLR). The digital circuits are supplied by $V_{D D}$ and either a 3.3 V or a 5 V logic can be used. With a $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ supply, the serial clock frequency can operate up to 20 MHz .

The data is shifted into the shift registers on the rising edge (low-to-high transition) of the clock. The switch configuration bit of SW31 is shifted in first and the switch configuration bit of SWO is shifted in last. To avoid clock feedthrough, the latch enable input ($\overline{\mathrm{LE}}$) should remain high while the 32-bit data-in signal is shifted into the 32-bit register. After the valid 32-bit data complete shifting into the shift registers, the high-to-low transition of the $\overline{\mathrm{LE}}$ signal transfers the contents of the shift register into the latches. Finally, setting the $\overline{\mathrm{LE}}$ high again allows all the latches to keep the current state, while new data can now be shifted into the shift registers without upsetting the latches.
It is recommended to change all the latch states at the same time through this method to avoid possible clock feedthrough noise. See Figure 4-2 for details.

FIGURE 4-2: Latch Enable Timing Waveforms.

When the CLR input is set high, all 32 latches are cleared of the data. Consequently, all the high-voltage switches are set to off state. However, the CLR signal does not affect the contents of the shift register, so the shift register can operate independently of the CLR signal. Hence, after the CLR input is set low, the shift register would still retain the previous data.

The serial input interface of the HV2802/HV2902 allows multiple devices to daisy-chain together. In this configuration, DOUT of a HV2802/HV2902 device is connected to the $\mathrm{D}_{\text {IN }}$ of the subsequent device, and so forth. The last $D_{\text {OUT }}$ of the daisy-chained HV2802/HV2902 can either be floating or fed back to an FPGA to check the previously stored shift register data. To control all the high-voltage analog switch states in daisy-chained N devices, N times 32 clocks and N times 32 bits of data are shifted into shift registers, while $\overline{\mathrm{LE}}$ remains high and CLR remains low. After all N times 32 bits of data finish shifting in, the high-to-low transition of the $\overline{\mathrm{LE}}$ transfers the data from all N times 32-bit shift registers to N times 32 latches simultaneously. Consequently, all N times 32 high-voltage analog switches change states simultaneously.
It is recommended that 0.1 uF ceramic decoupling capacitors, with the appropriate voltage ratings, be connected between GND and the other supplies (V_{DD}, V_{PP} and V_{NN}). These decoupling capacitors should be placed as close as possible to the device.

The HV2802/HV2902 devices do not have a specific power up/down sequence. During the power up/down period, all the analog switch inputs should be within the V_{PP} and V_{NN} range or floating. The rise time and fall time of the power supplies, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{PP}}$ and V_{NN}, should be greater than 1 ms . Violating the rise time or fall time requirement on the power supplies may cause malfunction such as latch-up or even permanent damage of the device.
The HV2902 device has $35 \mathrm{k} \Omega$ integrated bleed resisters connected from all the analog switch terminals A and B to RGND. These bleed resisters eliminate voltage build-up on capacitive loads such as piezoelectric transducers. The HV2802 device does not have integrated bleed resistors.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

78-Ball VFBGA (9x9x1.0)

Legend: $X X$...X Customer-specific information
$Y \quad$ Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
(e8) Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb -free. The Pb -free JEDEC designator (e8) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

78-Ball Very Thin Fine Pitch Ball Grid Array (5G) - 9x9x1.0 mm Body [VFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

BOTTOM VIEW

HV2802/HV2902

78-Ball Very Thin Fine Pitch Ball Grid Array (5G) - 9x9x1.0 mm Body [VFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

SOLDER BALL - DETAIL A

DETAIL A

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	78		
Pitch	e	0.65 BSC		
Overall Height	A	-	-	1.00
Standoff	A 1	0.15	0.20	0.25
Molded Cap Thickness	A 3	0.45	0.50	0.55
Overall Width	E	9.00 BSC		
Overall Ball Pitch	E 1	7.80 BSC		
Overall Length	D	9.00 BSC		
Overall Ball Pitch	D 1	7.80 BSC		
Ball Diameter	Øb	0.25	0.30	0.35

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-371A Sheet 2 of 2

78-Ball Very Thin Fine Pitch Ball Grid Array (5G) - 9x9x1.0 mm Body [VFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS								
Dimension Limits							MIN		NOM	MAX
Contact Pitch	E1	0.65 BSC								
Contact Pitch	E2	0.65 BSC								
Contact Pad Spacing	C1		780							
Contact Pad Spacing	C2		7.80							
Contact Pad Diameter (X78)	X		0.25							

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing C04-2371A

HV2802/HV2902

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (October 2015)

- Original release of this document.

HV2802/HV2902

NOTES:

PRODUCT IDENTIFICATION SYSTEM

HV2802/HV2902

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC ${ }^{32}$ logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-907-6

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

[^0]
[^0]: Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its $P I C^{\oplus}$ MCUs and dsPIC® ${ }^{\oplus}$ DSCs, KEELOQ ${ }^{\oplus}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

