: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

64-Channel Serial to Parallel Converter With High Voltage Push-Pull Outputs

Features

- Processed with HVCMOS® technology
- Output voltages to 180 V
- Low power level shifting
- Shift register speed:
$6.0 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
$12 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}$
Latched data outputs
- Output polarity and blanking
- CMOS compatible inputs
- Forward and reverse shifting options

General Description

The HV3418 is a low voltage serial to high voltage parallel converter with push-pull outputs. This device has been designed for use as a printer driver for inkjet applications. It can also be used in any application requiring multiple output, high voltage, low current sourcing and sinking capabilities.

The device consists of a 64-bit shift register, 64 latches, and control logic to perform the polarity select and blanking of the outputs. A DIR pin controls the direction of data shift through the device. With DIR grounded, $D_{10} A$ is Data-In and $D_{10} B$ is Data-Out; data is shifted from $\mathrm{HV}_{\text {out }} 64$ to $\mathrm{HV}_{\text {out }} 1$. When DIR is at logic high, $D_{10} B$ is Data-In and $D_{10} A$ is Data-Out: data is then shifted from $\mathrm{HV}_{\text {out }}{ }^{1}$ to $\mathrm{HV}_{\text {out }} 64$. Data is shifted through the shift register on the low to high transition of the clock. Data output buffers are provided for cascading devices. Operation of the shift register is not affected by the LE (latch enable), BL (blanking), or the POL(polarity) inputs. Transfer of data from the shift register to the latch occurs when the LE (latch enable) is high. The data in the latch is stored during LE transition from high to low.

Functional Block Diagram

Ordering Information

Part Number	Package Option	Packing
HV3418PG-G	$80-$ Lead PQFP	$66 /$ Tray

-G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

Parameter	Value
Supply voltage, V_{DD}	-0.5 V to +15 V
Output voltage, V_{PP}	V_{DD} to +200 V
Logic input levels	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Ground current ${ }^{1}$	1.5 A
High voltage supply current ${ }^{1}$	1.3 A
Continuous total power dissipation ${ }^{2}$	1200 mW
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to GND.

Notes:

1. Connection to all power and ground pads is required. Duty cycle is limited by the total power dissipated in the package.
2. For operation above $25^{\circ} \mathrm{C}$ ambiant derate linearly to maximum operating temperature at $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Pin Configuration

80-Lead PQFP (top view)

Product Marking

80-Lead PQFP
Package may or may not include the following marks: Si or 47

Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{j a}$
80-Lead PQFP	$37^{\circ} \mathrm{C} / \mathrm{W}$

Recommended Operating Conditions

Sym	Parameter		Min	Typ	Max	Units
$V_{D D}$	Logic supply voltage	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	4.5	5.0	5.5	V
		$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$	10.8	12.0	13.2	
$\mathrm{V}_{\text {PP }}$	High voltage supply		60	-	180	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		$\mathrm{V}_{\mathrm{DD}}-0.9$	-	V_{DD}	V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0	-	0.9	V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-40	-	+85	${ }^{\circ} \mathrm{C}$

Power-up sequence should be the following:

1. Connect ground
2. Apply $V_{D D}$
3. Set all inputs (Data, CLK, Enable, etc.) to a known state
4. Apply $V_{P P}$

The $V_{P P}$ should not drop below $V_{D D}$ or float during operation.
Power-down sequence should be the reverse of the above.

DC Electrical Characteristics (Over recommended operating conditions unless otherwise noted)

Sym	Parameter		Min	Max	Units	Conditions
$I_{\text {D }}$	V_{DD} supply current		-	25	mA	$\mathrm{f}_{\mathrm{CLK}}=12 \mathrm{MHz}, \mathrm{f}_{\text {DATA }}=12 \mathrm{MHz}, \overline{\mathrm{LE}}=$ low
$\mathrm{I}_{\text {DDQ }}$	Quiescent V_{DD} supply current		-	200	$\mu \mathrm{A}$	All $\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {D }}$
$\mathrm{I}_{\text {PP }}$	High voltage supply current		-	0.50	mA	$\mathrm{V}_{\mathrm{PP}}=180 \mathrm{~V}$. All outputs high.
			-	0.50		$V_{P P}=180 \mathrm{~V}$. All outputs low.
I_{H}	High-level logic input current		-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {D }}$
IL	Low-level logic input current		-	-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
$\mathrm{V}_{\text {OH }}$	High level output	HV ${ }_{\text {OUT }}$	155	-	V	$\begin{aligned} & \mathrm{V}_{\text {PP }}=180 \mathrm{~V}, \mathrm{IHV} \text { out }=-5.0 \mathrm{~mA}, \\ & \text { ID }_{\text {oUT }}=-100 \mu \mathrm{~A} \end{aligned}$
		$\mathrm{D}_{\text {out }}$	$\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$	-		
V_{oL}	Low level output	HV ${ }_{\text {out }}$	-	25	V	$\begin{aligned} & \mathrm{V}_{\text {PP }}=180 \mathrm{~V}, \mathrm{IHV} \text { out }=+5.0 \mathrm{~mA}, \\ & \text { ID }_{\text {OUT }}=+100 \mu \mathrm{~A} \end{aligned}$
		$\mathrm{D}_{\text {out }}$	-	1.0		
$\mathrm{V}_{\text {oc }}$	$\mathrm{HV}_{\text {OUT }}$ clamp voltage		-	$\mathrm{V}_{\mathrm{DD}}+1.5$	V	$\mathrm{I}_{\mathrm{LL}}=+5.0 \mathrm{~mA}$
			-	-1.5		$\mathrm{I}_{\mathrm{OL}}=-5.0 \mathrm{~mA}$

AC Electrical Characteristics (For $V_{D D}=12 \mathrm{~V}$. Values in parentheses are for $V_{D D}=5.0 \mathrm{~V}, V_{P P}=180 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$)

Sym	Parameter	Min	Max	Units	Conditions
$\mathrm{f}_{\mathrm{CLK}}$	Clock frequency	-	$12(6.0)$	MHz	---
t_{w}	Clock width high or low	$40(83)$	-	ns	---
t_{SU}	Data set-up time before clock rises	$25(35)$	-	ns	---
t_{H}	Data hold time after clock rises	$10(30)$	-	ns	---
$\mathrm{t}_{\text {WLE }}$	LE pulse width	$62(80)$	-	ns	---
$\mathrm{t}_{\text {DLE }}$	Delay time clock to LE high to low	$25(35)$	-	ns	---
$\mathrm{t}_{\text {SLE }}$	LE set-up time before clock rises	$30(40)$	-	ns	---
$\mathrm{t}_{\mathrm{ON}}, \mathrm{t}_{\mathrm{OFF}}$	Time from LE to HV				
$\mathrm{t}_{\text {OHL }}$	Delay time clock to data high to low	-	$50(110)$	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
$\mathrm{t}_{\text {DLH }}$	Delay time clock to data low to high	-	$75(160)$	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	All logic inputs	-	$1.0(1.5)$	$\mu \mathrm{s}$	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$

Notes:

1. Shift register speed can be as low as $D C$ as long as data set-up and hold time meet the spec.
2. $A C$ characteristics are guaranteed only under $V_{D D}=12 \mathrm{~V}$ and $V_{D D}=5.0 \mathrm{~V}$.

Input and Output Equivalent Circuits

Switching Waveforms

Function Table

Function	Inputs					DIR	Outputs				
	Data	CLK	$\overline{\text { LE }}$	$\overline{B L}$	$\overline{\mathrm{POL}}$		Shift Reg		HV Outputs		Data Out
All on	X	X	X	L	L	X	*	*...*	H	H...H	*
All off	X	X	X	L	H	X	*	*...*	L	L...L	*
Invert mode	X	X	L	H	L	X	*	*...*	*	*...*	*
Load S/R	H or L	\uparrow	L	H	H	X	H or L	*...*	*	*...*	*
Load/store	X	X	\downarrow	H	H	X	*	*...*	*	*...*	*
data in latches	X	X	\downarrow	H	L	X	*	*...*	*	*...*	*
Transparent	L	\uparrow	H	H	H	X	L	*...*	L	*...*	*
latch mode	H	\uparrow	H	H	H	X	H	*...*	H	*...*	*
I/O relation	$\mathrm{D}_{10} \mathrm{~A}$	\uparrow	X	X	X	L	$\mathrm{Q}_{\mathrm{N}} \rightarrow$	$\mathrm{Q}_{\mathrm{N}+1}$			$\mathrm{D}_{10} \mathrm{~B}$
IO relation	$\mathrm{D}_{10} \mathrm{~B}$	\uparrow	X	X	X	H	$\mathrm{Q}_{\mathrm{N}} \rightarrow$	Q_{N+1}			$\mathrm{D}_{10} \mathrm{~A}$

Notes:

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level $=0 \mathrm{~V}, \mathrm{X}=$ irrelevant, $\uparrow=$ low-to-high transition, $\downarrow=$ high-to-low transition.

* = dependent on previous stage's state before the last CLK or last $\overline{\operatorname{LE}}$ high.

Pin Description

Pin \#	Function
1	$\mathrm{HV}_{\text {OUT }} 41 / 24$
2	$\mathrm{HV}_{\text {OUT }} 42 / 23$
3	$\mathrm{HV}_{\text {OUT }} 43 / 22$
4	$\mathrm{HV}_{\text {OUT }} 44 / 21$
5	$\mathrm{HV}_{\text {OUT }} 45 / 20$
6	$\mathrm{HV}_{\text {OUT }} 46 / 19$
7	$\mathrm{HV}_{\text {OUT }} 47 / 18$
8	$\mathrm{HV}_{\text {OUT }} 48 / 17$
9	$\mathrm{HV}_{\text {OUT }} 49 / 16$
10	$\mathrm{HV}_{\text {OUT }} 50 / 15$
11	$\mathrm{HV}_{\text {OUT }} 51 / 14$
12	$\mathrm{HV}_{\text {OUT }} 52 / 13$
13	$\mathrm{HV}_{\text {OUT }} 53 / 12$
14	$\mathrm{HV}_{\text {OUT }} 54 / 11$
15	$\mathrm{HV}_{\text {OUT }} 55 / 10$
16	$\mathrm{HV}_{\text {OUT }} 56 / 9$
17	$\mathrm{HV}_{\text {OUT }} 57 / 8$
18	$\mathrm{HV}_{\text {OUT }} 58 / 7$
19	$\mathrm{HV}_{\text {OUT }} 59 / 6$
20	$\mathrm{HV}_{\text {out }} 60 / 5$
21	$\mathrm{HV}_{\text {out }} 61 / 4$
22	$\mathrm{HV}_{\text {OUT }} 62 / 3$
23	$\mathrm{HV}_{\text {Out }} 63 / 2$
24	$\mathrm{HV}_{\text {out }} 64 / 1$
25	VPP
26	$\mathrm{D}_{10} \mathrm{~A}$
27	N/C

Pin \#	Function
28	N/C
29	BL
30	$\overline{\mathrm{POL}}$
31	VDD
32	DIR
33	LGND
34	OGND
35	N/C
36	N/C
37	CLK
38	$\overline{L E}$
39	$\mathrm{D}_{10} \mathrm{~B}$
40	VPP
41	$\mathrm{HV}_{\text {OUT }} 1 / 64$
42	$\mathrm{HV}_{\text {OUT }}{ }^{2 / 63}$
43	$\mathrm{HV}_{\text {OUT }} 3 / 62$
44	$\mathrm{HV}_{\text {OUT }} 4 / 61$
45	$\mathrm{HV}_{\text {OUT }} 5 / 60$
46	$\mathrm{HV}_{\text {OUT }} 6 / 59$
47	$\mathrm{HV}_{\text {OUT }} 7 / 58$
48	$\mathrm{HV}_{\text {OUT }} 8 / 57$
49	$\mathrm{HV}_{\text {OUT }} 9 / 56$
50	HV ${ }_{\text {OUT }} 10 / 55$
51	HV ${ }_{\text {OUT }} 11 / 54$
52	HV ${ }_{\text {OUT }} 12 / 53$
53	HV ${ }_{\text {OUT }} 13 / 52$
54	HV ${ }_{\text {OUT }} 14 / 51$

Pin \#	Function
55	$\mathrm{HV}_{\text {OUT }} 15 / 50$
56	$\mathrm{HV}_{\text {OUT }} 16 / 49$
57	$\mathrm{HV}_{\text {OUT }} 17 / 48$
58	$\mathrm{HV}_{\text {OUT }} 18 / 47$
59	HV ${ }_{\text {OUT }} 19 / 46$
60	HV ${ }_{\text {OUT }} 20 / 45$
61	HV ${ }_{\text {out }} 21 / 44$
62	HV ${ }_{\text {OUT }} 22 / 43$
63	HV ${ }_{\text {OUT }} 23 / 42$
64	$\mathrm{HV}_{\text {OUT }} 24 / 41$
65	HV ${ }_{\text {OUT }} 25 / 40$
66	$\mathrm{HV}_{\text {OUT }} 26 / 39$
67	$\mathrm{HV}_{\text {OUT }} 27 / 38$
68	$\mathrm{HV}_{\text {OUT }} 28 / 37$
69	$\mathrm{HV}_{\text {OUT }} 29 / 36$
70	$\mathrm{HV}_{\text {OUT }} 30 / 35$
71	$\mathrm{HV}_{\text {OUT }} 31 / 34$
72	$\mathrm{HV}_{\text {OUT }} 32 / 33$
73	$\mathrm{HV}_{\text {OUT }} 33 / 32$
74	$\mathrm{HV}_{\text {OUT }} 34 / 31$
75	$\mathrm{HV}_{\text {OUT }} 35 / 30$
76	$\mathrm{HV}_{\text {OUT }} 36 / 29$
77	HV ${ }_{\text {OUT }} 37 / 28$
78	$\mathrm{HV}_{\text {OUT }} 38 / 27$
79	HV ${ }_{\text {OUT }} 39 / 26$
80	$\mathrm{HV}_{\text {OUT }} 40 / 25$

Notes:

Pin designation for DIR $=H / L$
Example:
for DIR = H, Pin 1 is $\mathrm{HV}_{\text {OUT }} 41$ for DIR $=L$, Pin 1 is $H V_{\text {OUT }}^{\text {OUT }} 24$

80-Lead PQFP Package Outline (PG)

$20.00 \times 14.00 \mathrm{~mm}$ body, 3.40 mm height (max), 0.80 mm pitch, 3.90 mm footprint

Top View

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	θ	01
$\begin{aligned} & \text { Dimen- } \\ & \text { sion } \\ & (\mathrm{mm}) \end{aligned}$	MIN	2.80*	0.25	2.55	0.30	23.65*	19.80*	17.65*	13.80*	$\begin{aligned} & 0.80 \\ & \text { BSC } \end{aligned}$	0.73	$\begin{aligned} & 1.95 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	2.80	-	23.90	20.00	17.90	14.00		0.88			$3.5{ }^{\circ}$	-
	MAX	3.40	0.50*	3.05	0.45	24.15*	20.20*	18.15*	14.20*		1.03			7°	16°

JEDEC Registration MO-112, Variation CB-1, Issue B, Sept. 1995.

* This dimension is not specified in the JEDEC drawing.

Drawings not to scale.
Supertex Doc. \#: DSPD-80PQFPPG, Version C041309.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

