: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

16-Channel Serial to Parallel Converter with High Voltage Backplane Driver and Push-Pull Outputs

Features

- HVCMOS ${ }^{\circledR}$ technology
- Output voltage up to +200 V
- Shift register speed $500 \mathrm{kHz} @ \mathrm{~V}_{\mathrm{DD}}=2.0 \mathrm{~V}$
- 16 high voltage outputs
- High voltage backplane driver
- CMOS input levels

Applications

- Multiple segment EL display
- Piezoelectric transducer driver
- Braille driver

General Description

The HV509 is a 200V, 16 -channel serial to parallel converter. The high voltage outputs and the backplane driver are designed to source and sink $\pm 1.0 \mathrm{~mA}$.

The high voltage outputs are controlled by a 16 -bit serial shift register, followed by a 16 -bit latch. Data is shifted through the shift registers during the low to high clock transition. A data output buffer is provided for cascading multiple devices. Data is transferred to the 16 -bit latch when a logic level low is applied to the $\overline{L E}$ input. Data is stored in the latch when $\overline{L E}$ is high. Output states are controlled by the data in the latch and by the $\overline{\mathrm{POL}}$ pin.

Typical Application Circuit

Ordering Information

Device	Package Option
	32-Lead QFN
	$5.00 \times 5.00 \mathrm{~mm}$ body
	1.00mm height (max)
HV509	HV509K6-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Logic supply, V_{DD}	-0.5 V to 7.0 V
High voltage supply, V_{PP}	215 V
Translator supply voltage, $\mathrm{V}_{\text {BIAS }}$	-0.5 V to 7.0 V
Logic input levels	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Operating junction temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

Pads are at the bottom of the package. Exposed heat slug is at VPP potential.

Product Marking

HV509
LLLLLL
YYWW
AAACCC

L = Lot Number
YY = Year Sealed WW = Week Sealed
A = Assembler ID
C = Country of Origin = "Green" Packaging
32-Lead QFN (K6)

Operating Supply Voltages and Conditions

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{DD}	Logic supply voltage	2.0	3.0	5.5	V	---
$\mathrm{V}_{\mathrm{BIAS}}$	Level translator supply voltage	2.6	-	6.6	V	---
V_{PP}	Positive high voltage supply	50	-	200	V	---
V_{IH}	High-level input voltage	$0.9 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V	---
V_{IL}	Low-level input voltage	0	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$	V	---
T_{A}	Operating temperature	0	-	+70	${ }^{\circ} \mathrm{C}$	---

Notes:

1. External ground noise reduction circuit will be provided by design upon characterization.
2. Power-up sequence should be the following*:
3. Apply ground
4. Apply $V_{D D}$
5. Set all inputs ($\left.\mathrm{D}_{\mathrm{IN}}, \mathrm{CLK}, \overline{\mathrm{LE}}, \overline{\mathrm{POL}}\right)$ to a known state
6. Apply $\mathrm{V}_{\mathrm{BIAS}}$
7. Apply V_{Pp}
8. Power-down sequence should be the reverse of the above.
[^0]DC Electrical Characteristics
(Over operating supply voltages and temperature, unless otherwise noted)

Sym	Parameter		Min	Typ	Max	Units	Conditions
I_{DD}	V_{DD} supply current		-	-	1.0	mA	$\mathrm{f}_{\text {CLK }}=500 \mathrm{kHz}$
$\mathrm{I}_{\text {DQ }}$	Quiescent V_{DD} supply current		-	-	10	$\mu \mathrm{A}$	All logic inputs $=\mathrm{V}_{\mathrm{DD}}$ or 0 V
$\mathrm{I}_{\text {BIAS }}$	$\mathrm{V}_{\text {BIAS }}$ supply current		-	-	100	$\mu \mathrm{A}$	All $\mathrm{HV}_{\text {outs }}$ switching at 1 kHz . Peak $\mathrm{I}_{\text {BIAS }}=200 \mathrm{~mA}$ with all channels switching
$\mathrm{I}_{\text {BASQ }}$	Quiescent $\mathrm{V}_{\text {BIAS }}$ current		-	-	10	$\mu \mathrm{A}$	No HV ${ }_{\text {out }}$ switching
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current		-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PP}}=200 \mathrm{~V}$, outputs are static
I_{H}	High-level logic input current		-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{1 H}=\mathrm{V}_{\mathrm{DD}}$
I_{1}	Low-level logic input current		-	-	-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
V_{OH}	High level output	HV ${ }_{\text {Out }}$ \& BP	$\mathrm{V}_{\text {PP }}-12 \mathrm{~V}$	-	-	V	$1 \mathrm{HV}_{\text {OUT }}=-1.0 \mathrm{~mA}, \mathrm{~V}_{\text {PP }}=+200 \mathrm{~V}$
			$\mathrm{V}_{\text {PP }}-12 \mathrm{~V}$	--	-	V	$1 H V_{\text {OUT }}=-1.0 \mathrm{~mA}, \mathrm{~V}_{\text {PP }}=+50 \mathrm{~V}$
		$\mathrm{D}_{\text {out }}$	$\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$	-	-	V	$1 \mathrm{D}_{\text {OUT }}=-1.0 \mathrm{~mA}$
V_{oL}	Low level output	$\mathrm{HV}_{\text {OUT }}$ \& BP	-	-	12	V	$\begin{aligned} & \mathrm{IHV} \mathrm{O}_{\text {OT }}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {BIAS }}=5.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PP}}=+50 \text { to }+200 \mathrm{~V} \end{aligned}$
		$\mathrm{D}_{\text {OUt }}$	-	-	1.0	V	$1 \mathrm{D}_{\text {OUT }}=1.0 \mathrm{~mA}$
$\mathrm{C}_{\text {DIN }}$	Logic input capacitance		-	-	10	pF	---
$\mathrm{C}_{\text {Dout }}$	Logic output capacitance		-	-	10	pF	---

AC Electrical Characteristics (Over operating supply voltages and temperature, unless otherwise noted)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{f}_{\text {CLK }}$	Clock frequency	0	-	500	kHz	---
t_{c}	Clock high / low pulse width	1.0	-	-	$\mu \mathrm{s}$	---
$\mathrm{t}_{\text {su }}$	Data setup time before clock rises	50	-	-	ns	---
t_{H}	Data hold time after clock rises	50	-	-	ns	---
$\mathrm{t}_{\mathrm{CLE}}$	$\overline{\text { LE }}$ from CLK setup time	15	-	-	ns	---
$\mathrm{t}_{\text {WLE }}$	$\overline{\text { LE pulse width }}$	100	-	-	ns	---
t_{DD}	Clock negative edge to $\mathrm{D}_{\text {out }}$ delay	-	-	150	ns	$\begin{aligned} & \mathrm{C}_{\text {LDout }}=50 \mathrm{pF}, \\ & \left(\mathrm{C}_{\text {LDOUT }} \text { includes } \mathrm{C}_{\text {DIN }} \text { and } \mathrm{C}_{\text {DOUT }}\right) \end{aligned}$
$t_{\text {PHV }}$	Delay time from inputs for $\mathrm{HV}_{\text {out }} /$ BP to start rise/fall	-	-	500	ns	$V_{P P}=200 \mathrm{~V}, \mathrm{~V}_{\text {BAS }}=5.4 \mathrm{~V}$
t_{OR}	$\mathrm{HV}_{\text {OUtPUT }} / \mathrm{BP}$ rise time	-	-	300	$\mu \mathrm{s}$	$C_{L}=1500 \mathrm{pF}, \mathrm{V}_{P P}=200 \mathrm{~V}$
t_{oF}	$\mathrm{HV}_{\text {output }} / \mathrm{BP}$ fall time	-	-	300	$\mu \mathrm{s}$	$\begin{aligned} & C_{L}=1500 \mathrm{pF}, \mathrm{~V}_{\mathrm{BIAS}}=5.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PP}}=200 \mathrm{~V} \end{aligned}$
$\mathrm{t}_{\text {oc }}$	Width of $\overline{\mathrm{POL}}$ pulses	$\mathrm{t}_{\mathrm{PHV}}+\mathrm{t}_{\mathrm{OR}} / \mathrm{t}_{\text {OF }}$	-	-	$\mu \mathrm{s}$	---

Input and Output Equivalent Circuits

Logic Inputs

Logic Data Output

High Voltage Outputs

$\mathrm{V}_{\text {BIAS }}$ SUPPLY

The $\mathrm{V}_{\text {BIAS }}$ supply operates from 2.6 V to 6.6 V . It is the gate drive voltage for all of the output N -channel MOSFETs. This allows the output peak current sink to be set by varying the $\mathrm{V}_{\text {BIAS }}$ voltage. A higher $\mathrm{V}_{\text {BIAS }}$ voltage will increase the current sinking capability.

If large peak currents are not required, V_{DD} and $\mathrm{V}_{\text {BAS }}$ can be connected to the same power supply, provided they are both within the operating range. The operating V_{DD} range is 2.0 V to 5.5 V . A plot showing the typical characteristics of $\mathrm{I}_{\text {SINK }} \mathrm{vs}$ $V_{B I A S}$ is shown below.

Typical HV ${ }_{\text {OUT }} \mathrm{I}_{\text {SINK }}$ vs $\mathrm{V}_{\text {BIAS }}$
 ($\left.V_{P P}=200 \mathrm{~V}, C_{\text {LOAD }}=1 n F\right)$

Switching Waveforms

Functional Block Diagram

Function Table

Function	Inputs				Outputs			
	$\mathrm{D}_{\text {IN }}$	CLK	$\overline{\text { LE }}$	$\overline{\text { POL }}$	$\begin{aligned} & \text { Shift Reg } \\ & 1 \\ & \hline 2 . .16 \end{aligned}$	$\begin{array}{cc} \text { HV Outputs } \\ 1 & 2 . .16 \end{array}$	BP	$\mathrm{D}_{\text {out }}$
Load S/R	H OR L	\uparrow	H	X	H or L •... \bullet	- •... \bullet	X	\bullet
Transfer data in latch	X	L	L	H	* *..........*	* *..........*	L	\bullet
	X	L	L	L	* *..........*	* *..........* (b)	H	-
Store data in latches	X	X	H	H	- -...	- •... \bullet	L	\bullet
	X	X	H	L	- •... \bullet	(b)	H	-
Transparent mode	L	\uparrow	L	H	L •... \bullet	L •...	L	\bullet
	H	\uparrow	L	H	H •...	H •...	L	\bullet
Invert mode	X	X	H	L	- •... \bullet	(b)	H	X
	X	X	H	H	- •... \bullet	- •...	L	X

Notes:

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant, $\uparrow=$ low-to-high transition
\bullet - dependent on previous stage's state before the last CLK or last $\overline{\operatorname{EE}}$ low

* = data at the last CLK \uparrow
(b) = bar over all symbols

Pin Description

Pin \#	Function	Description
1	$\mathrm{HV}_{\text {Out }} 12$	High voltage push-pull output
2	$\mathrm{HV}_{\text {out }} 11$	High voltage push-pull output
3	$\mathrm{HV}_{\text {Out }} 10$	High voltage push-pull output
4	$\mathrm{HV}_{\text {out }} 9$	High voltage push-pull output
5	$\mathrm{HV}_{\text {OUT }}{ }^{8}$	High voltage push-pull output
6	$\mathrm{HV}_{\text {out }} 7$	High voltage push-pull output
7	$\mathrm{HV}_{\text {out }} 6$	High voltage push-pull output
8	$\mathrm{HV}_{\text {OUT }} 5$	High voltage push-pull output
9	$\mathrm{HV}_{\text {out }} 4$	High voltage push-pull output
10	$\mathrm{HV}_{\text {OUT }} 3$	High voltage push-pull output
11	$\mathrm{HV}_{\text {out }}{ }^{2}$	High voltage push-pull output
12	$\mathrm{HV}_{\text {out }} 1$	High voltage push-pull output
13	NC	No connect
14	VPP	High voltage supply
15	GND	Logic ground
16	NC	No connect
17	DIN	Data in
18	NC	No connect
19	CLK	Clock input logic
20	VDD	Logic supply voltage
21	$\overline{\text { POL }}$	Polarity bar input logic
22	$\overline{\text { LE }}$	Latch enable bar input logic
23	NC	No connect
24	DOUT	Data out
25	NC	No connect
26	VBIAS	Level translator bias voltage
27	HVGND	High voltage ground
28	BP	High voltage backplane output
29	$\mathrm{HV}_{\text {OUT }} 16$	High voltage push-pull output
30	$\mathrm{HV}_{\text {Out }} 15$	High voltage push-pull output
31	$\mathrm{HV}_{\text {Out }} 14$	High voltage push-pull output
32	$\mathrm{HV}_{\text {Out }} 13$	High voltage push-pull output

32-Lead QFN Package Outline (K6)

$5.00 \times 5.00 \mathrm{~mm}$ body, 1.00 mm height (max), 0.50 mm pitch

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 Identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
2. Depending on the method of manufacturing, a maximum of 0.15 mm pullback ($L 1$) may be present.
3. The inner tip of the lead may be either rounded or square.

Symbol		A	A1	A3	b	D	D2	E	E2	e	L	L1	$\boldsymbol{\theta}$
$\begin{aligned} & \text { Dimension } \\ & (\mathrm{mm}) \end{aligned}$	MIN	0.80	0.00	$\begin{aligned} & 0.20 \\ & \text { REF } \end{aligned}$	0.18	4.85*	1.05	4.85*	1.05	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.30^{+}	0.00	0°
	NOM	0.90	0.02		0.25	5.00	-	5.00	-		0.40^{+}	-	-
	MAX	1.00	0.05		0.30	5.15*	$3.55{ }^{+}$	5.15*	$3.55{ }^{+}$		$0.50{ }^{+}$	0.15	14°

JEDEC Registration MO-220, Variation VHHD-6, Issue K, June 2006.
*This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.
\dagger This dimension is a non-JEDEC dimension.
Drawings not to scale.
Supertex Doc. \#: DSPD-32QFNK65X5P050, Version B090808.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www. supertex.com/packaging.html.)

[^1]
[^0]: *This power up sequence requires an external high voltage diode between VDD and VPP. Without the diode, power up VPP to a VDD level first to bias the silicon substrate. After all other signals are powered, finish raising the V_{PP} to its final level.

[^1]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

