: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect

Features

- HVCMOS ${ }^{\circledR}$ technology
- Operating output voltage of 250 V
- Low power level shifting from 5.0 to 250 V
- Shift register speed $8.0 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
- 8 latch data outputs
- Output polarity and blanking
- Output short circuit detect
- Output high-Z control
- CMOS compatible inputs

Applications

- Piezoelectric transducer driver
- Braille driver
- Weaving applications
- Printer drivers
- MEMs
- Displays

General Description

The HV513 is a low voltage serial to high voltage parallel converter with 8 high voltage push-pull outputs. This device has been designed to drive small capacitve loads such as piezoelectric transducers. It can also be used in any application requiring multiple high voltage outputs, with medium current source and sink capabilities.

The device consists of an 8-bit shift register, 8 latches, and control logic to perform the polarity select and blanking of the outputs. Data is shifted through the shift register on the low to high transition of the clock. A data output buffer is provided for cascading devices. Operation of the shift register is not affected by the $\overline{\mathrm{LE}}, \overline{\mathrm{BL}}, \overline{\mathrm{POL}}$, or the $\overline{\mathrm{HI}-\mathrm{Z}}$ control inputs. Transfer of data from the shift register to the latch occurs when the $\overline{\mathrm{LE}}$ is high. The data in the latch is stored when $\overline{\mathrm{LE}}$ is low. A high-Z ($\overline{\mathrm{HI}-\mathrm{Z})}$ pin is provided to set all the outputs in a high- Z state.

All outputs have short circuit protection that detects if the outputs have reached the required output state. If output does not track the required state, then the SHORT pin will be low. This output will pulse low during the output transistion period under normal operation; see SC Timing Diagram for details.

All outputs will have a break-before-make circuitry to reduce cross-over current during output state changes.

The $\overline{\mathrm{POL}}, \overline{\mathrm{BL}}, \overline{\mathrm{LE}}$, and $\overline{\mathrm{HI}-\mathrm{Z}}$ inputs have an internal pull up resistor.

Typical Application Circuit

Ordering Information

Part Number	Package	Packing
HV513K7-G	32-Lead QFN	400/Tray
HV513K7-G M935	32-Lead QFN	2000/Reel
HV513WG-G	24-Lead SOW	1000/Reel

-G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

Parameter	Value
Logic supply, V_{DD}	-0.5 V to 6.0 V
High voltage supply, V_{PD}	V_{DD} to 275 V
Logic input levels	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Ground current ${ }^{1}$	0.3 A
${\text { High voltage supply current }{ }^{1}}^{\text {Continuous total power dissipation }}{ }^{2}$	0.25 A
Operating junction temperature	750 mW
Storage temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Notes:

1. Connection to all power and ground pads is required. Duty cycle is limited by the total power dissipated in the package.
2. For operation above $25^{\circ} \mathrm{C}$ ambient derate linearly to $85^{\circ} \mathrm{C}$ at $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{\boldsymbol{j a}}$
32-Lead QFN	$22^{\circ} \mathrm{C} / \mathrm{W}$
24-Lead SOW	$44^{\circ} \mathrm{C} / \mathrm{W}$

Pin Configuration

24-Lead SOW (top view)

Product Marking

L = Lot Number $Y Y=$ Year Sealed WW = Week Sealed A = Assembler ID C = Country of Origin = "Green" Packaging
Package may or may not include the following marks: Si or $(\$ 1$ 32-Lead QFN

Bottom Marking
YY = Year Sealed WW = Week Sealed
A = Assembler ID
L = Lot Number
C = Country of Origin*

*May be part of top marking
Package may or may not include the following marks: Si or (4)
24-Lead SOW

Typical Operating Conditions

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{DD}	Logic supply voltage	4.5	5.0	5.5	V	---
V_{PP}	High voltage supply	50	-	250	V	Note 1
$\mathrm{V}_{I H}$	High-level input voltage	$\mathrm{V}_{\mathrm{DD}}-0.9$	-	V_{DD}	V	---
V_{IL}	Low-level input voltage	0	-	0.9	V	---
T_{J}	Operating junction temperature	-40	-	+85	${ }^{\circ} \mathrm{C}$	---

Notes:

1. Below minimum $V_{P P}$ the output may not switch.
2. Power-up sequence should be the following:
3. Connect ground
4. Apply $V_{D D}$
5. Set all inputs (Data, CLK, Enable, etc.) to a known state
6. Apply $V_{P P}$

Power-down sequence should be the reverse of the above

DC Electrical Characteristics (Over typical operating conditions unless otherwise specified, $T_{J}=25^{\circ} \mathrm{C}$)

Sym	Parameter		Min	Typ	Max	Units	Conditions
I_{DD}	V_{DD} supply current		-	-	4.0	mA	$\mathrm{f}_{\mathrm{CLK}}=8.0 \mathrm{~Hz}, \overline{\mathrm{LE}}=$ Low
$\mathrm{I}_{\text {DD }}$	Quiescent $\mathrm{V}_{\text {DD }}$ supply current		-	-	0.1	mA	All $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {D }}$
			-	-	2.0		All $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {PP }}$	V_{PP} supply current		-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=250 \mathrm{~V}, \mathrm{f}_{\text {out }}=300 \mathrm{~Hz}, \\ & \text { no load } \end{aligned}$
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current		-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PP}}=240 \mathrm{~V}$, outputs are static
I_{H}	High-level logic input current		-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$
$1{ }_{\text {IL }}$	Low-level logic input current		-		-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{LL}}=0 \mathrm{~V}$
			-	-	-350		$V_{\mathrm{IL}}=0 \mathrm{~V},$ for inputs w/pull-up resistors
$\mathrm{V}_{\text {OH }}$	High level output	$\mathrm{HV}_{\text {Out }}$	140	-	-	V	$\mathrm{V}_{\text {PP }}=200 \mathrm{~V}, \mathrm{I}_{\text {HVOUT }}=-20 \mathrm{~mA}$
		Data out	$\mathrm{V}_{\text {DD }}-1.0 \mathrm{~V}$	-	-		$\mathrm{I}_{\text {DOUT }}=-0.1 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Low level output	HV ${ }_{\text {OUT }}$	-	-	60	V	$\mathrm{V}_{\text {DD }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {HVout }}=20 \mathrm{~mA}$
		Data out	-	-	1.0		$\mathrm{I}_{\text {DOUT }}=0.1 \mathrm{~mA}$

AC Electrical Characteristics (Over typical operating conditions unless otherwise specified, $T_{J}=25^{\circ} \mathrm{C}$)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{f}_{\mathrm{CLK}}$	Clock frequency	0	-	8.0	MHz	---
$\mathrm{f}_{\text {out }}$	Output switching frequency (SOA limited)	-	300	-	Hz	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{nF}, \mathrm{V}_{\mathrm{PP}}=200 \mathrm{~V}$
$t_{\text {w }}$	Clock width high and low	62	-	-	ns	---
$\mathrm{t}_{\text {su }}$	Data setup time before clock rises	15	-	-	ns	---
t_{H}	Data hold time after clock rises	30	-	-	ns	---
$t_{\text {wLE }}$	Width of latch enable pulse	80	-	-	ns	---
$\mathrm{t}_{\text {DLE }}$	$\overline{\text { LE }}$ delay time after rising edge of clock	35	-	-	ns	---
$\mathrm{t}_{\text {sLE }}$	$\overline{\text { LE }}$ setup time before rising edge of clock	40	-	-	ns	---
$\mathrm{t}_{\mathrm{OR}}, \mathrm{t}_{\mathrm{OF}}$	HV ${ }_{\text {out }}$ rise/fall time	-	-	1000	$\mu \mathrm{s}$	$C_{L}=100 \mathrm{nF}, \mathrm{V}_{\mathrm{PP}}=200 \mathrm{~V}$
$\mathrm{t}_{\text {d ONOFF }}$	Delay time for output to start rise/fall	-	-	500	ns	---
$\mathrm{t}_{\text {DHL }}$	Delay time clock to $\mathrm{D}_{\text {out }}$ high to low	-	-	110	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\text {DLH }}$	Delay time clock to $\mathrm{D}_{\text {out }}$ low to high	-	-	110	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	All logic inputs	-	-	5.0	ns	---
$\mathrm{t}_{\text {SD }}$	Output short circuit detection	-	-	500	ns	$C_{L}=15 \mathrm{pF},$ Short to output fall of $\overline{\text { SHORT }}$
t_{sc}	Output short circuit clear	-	-	3000	ns	Short clear to output rise of SHORT
$\mathrm{t}_{\text {H-Z }}$	Output $\overline{\mathrm{HI}-\mathrm{Z}}$ state	-	-	500	ns	---

Input and Output Equivalent Circuits

Logic Inputs

Logic Data Output

High Voltage Outputs

Short Circuit Detect Detail Timing

Note:
For $V_{P P}$ greater than 150V:
Short detect output will flag short conditions

- HV ${ }_{\text {out }}$ is higher than 10 V when expected low
- $H V_{\text {OUt }}$ is lower than $V_{P P}-100 \mathrm{~V}$ when expected high

Short detect output will stay clear

- HV ${ }_{\text {out }}$ is lower than 2.0V when expected low
- $H V_{\text {OUt }}$ is higher than $V_{P P}-60 \mathrm{~V}$ when expected high

Switching Waveforms

Functional Block Diagram

Note:
$\overline{P O L}, \overline{B L}, \overline{L E}$, and $\overline{H i-Z}$ have internal $20 k \Omega$ pull-up resistors.

Function Table

Function	Inputs						Outputs		
	Data	CLK	LE	$\overline{B L}$	POL	HI-Z	Shift Reg $12 \ldots 8$	$\begin{gathered} \text { HV Outputs } \\ 1 \\ 2 . . .8 \end{gathered}$	Data Out
All on	X	X	X	L	L	H	- •...	H H.... ${ }^{\text {l }}$	\bullet
All off	X	X	X	L	H	H	- •... \bullet	L L...L	-
Invert mode	X	X	L	H	L	H	-...	- •... ${ }^{\text {(b) }}$	-
Load S/R	H ORL	\uparrow	L	H	H	H	H or L •...	- •... \bullet	-
Store data in latches	X	X	L	H	H	H	- •...	- •... \bullet	\bullet
	X	X	L	H	L	H	$\bullet . . . \bullet$	- •... ${ }^{\text {(b) }}$	\bullet
Transparent mode	L	\uparrow	H	H	H	H	L •... \bullet	L •... \bullet	-
	H	\uparrow	H	H	H	H	H •...	H •... \bullet	-
Outputs High-Z	X	X	X	X	X	L	$\bullet . . . \bullet$	High impedence	\bullet
Outputs on	X	X	X	X	X	H	- •	- •... \bullet	-

Notes:
$H=$ high level, $L=$ low level, $X=$ irrelevant,$\uparrow=$ low-to-high transition
$\bullet=$ dependent on previous stage's state before the last CLK or last $\overline{L E}$ high.

Pin Description - 32-Lead QFN

Pin \#	Function	Description
1	NC	No internal connection
2		
3		
4	LGND	Low voltage ground
5	HVGND	High voltage ground
6		
7	NC	No internal connection
8		
9	$\mathrm{HV}_{\text {OUT }} 1$	High voltage push-pull output
10	$\mathrm{HV}_{\text {OUT }}{ }^{2}$	High voltage push-pull output
11	$\mathrm{HV}_{\text {OUT }}{ }^{3}$	High voltage push-pull output
12	$\mathrm{HV}_{\text {OUT }} 4$	High voltage push-pull output
13	$\mathrm{HV}_{\text {OUT }} 5$	High voltage push-pull output
14	$\mathrm{HV}_{\text {OUT }} 6$	High voltage push-pull output
15	$\mathrm{HV}_{\text {OUT }} 7$	High voltage push-pull output
16	$\mathrm{HV}_{\text {OUT }} 8$	High voltage push-pull output
17	NC	No internal connection
18		
19	VPP	High voltage supply
20		
21	VDD	Logic supply voltage
22	DOUT	Data output
23	NC	No internal connection
24		
25	$\overline{\mathrm{BL}}$	Blanking pin, logic input low sets all $\mathrm{HV}_{\text {outs }}$ low
26	NC	No internal connection
27	$\overline{\mathrm{POL}}$	Polarity bar input logic
28	CLK	Clock pin, shift registers shifts data on rising edge of input clock
29	$\overline{\text { LE }}$	Latch enable bar input logic
30	$\overline{\text { SHORT }}$	If output does not reach its required state, SHORT pin will output logic low
31	$\overline{\mathrm{HI}-\mathrm{Z}}$	High impedance pin, logic input low sets all outputs in a high impedance state
32	DIN	Data input
Center Pad	VPP	Center pad is at V_{PP} potential. Connect to VPP or leave floating.

Pin Description - 24-Lead SOW

Pin \#	Function	Description
1	NC	No internal connection
2	VDD	Logic supply voltage
3	DOUT	Data output
4	$\overline{B L}$	Blanking pin, logic input LOW sets all HV outs ${ }_{\text {oum }}$
5	$\overline{\mathrm{POL}}$	Polarity bar input logic
6	CLK	Clock pin, shift registers shifts data on rising edge of input clock
7	$\overline{\text { LE }}$	Latch enable bar input logic
8	SHORT	If output does not reach its required state, SHORT pin will output logic LOW
9	HI-Z	High impedance pin, logic input LOW sets all outputs in a high impedance state
10	$\overline{\text { DIN }}$	Data input
11	LGND	Low voltage ground
12	NC	No internal connection
13	HVGND	High voltage ground
14	HVGND	High volage ground
15	$\mathrm{HV}_{\text {out }} 1$	High voltage push-pull output
16	$\mathrm{HV}_{\text {out }}{ }^{2}$	High voltage push-pull output
17	$\mathrm{HV}_{\text {OUT }}{ }^{3}$	High voltage push-pull output
18	$\mathrm{HV}_{\text {out }} 4$	High voltage push-pull output
19	$\mathrm{HV}_{\text {OUT }}{ }^{5}$	High voltage push-pull output
20	$\mathrm{HV}_{\text {OUT }} 6$	High voltage push-pull output
21	$\mathrm{HV}_{\text {OUT }} 7$	High voltage push-pull output
22	$\mathrm{HV}_{\text {OUT }} 8$	High voltage push-pull output
23	VPP	High voltage supply
24		

www.supertex.com

32-Lead QFN Package Outline (K7)

$6.00 \times 6.00 \mathrm{~mm}$ body, 0.80 mm height (max), 0.50 mm pitch

Top View

Detail B

Detail C

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded marklidentifier; an embedded metal marker; or a printed indicator.
2. The 4 corner pads are for mechanical placement only, they are not internally connected.

Symbol		A	A1	b	D	D1	E	E1	e	e1	e2	L	L1	LC	LC1
Dimension (mm)	MIN	0.70	0.00	0.20	5.90	3.20	5.90	4.30	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 1.00 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.975 \\ & \text { REF } \end{aligned}$	0.20	$\begin{aligned} & 0.10 \\ & \text { REF } \end{aligned}$	0.20	0.25
	NOM	0.75	-	0.30	6.00	3.30	6.00	4.40				0.30		0.30	0.35
	MAX	0.80	0.05	0.40	6.10	3.40	6.10	4.50				0.40		0.40	0.45

Drawings not to scale.

Supertex Doc. \#: DSPD-32QFNK76X6P050, Version B092309.

24-Lead SOW (Wide Body) Package Outline (WG)

15.40×7.50 body, 2.65 mm height (max), 1.27mm pitch

Top View

View A-A

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	E	E1	e	h	L	L1	L2	θ	01
Dimension (mm)	MIN	2.15*	0.10	2.05	0.31	15.20*	9.97*	7.40*	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.25	0.40	$\begin{aligned} & 1.40 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	-	-	15.40	10.30	7.50		-	-			-	-
	MAX	2.65	0.30	2.55*	0.51	15.60*	10.63*	7.60*		0.75	1.27			8°	15°

JEDEC Registration MS-013, Variation AD, Issue E, Sep. 2005.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.
Supertex Doc. \#: DSPD-24SOWWG, Version E041309.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

